
AnyLoss: Transforming Classification Metrics into Loss Functions
Doheon Han

University of Notre Dame
Department of Computer Science &

Engineering and Lucy Family
Institute for Data & Society
Notre Dame, Indiana, USA

dhan6@nd.edu

Nuno Moniz
University of Notre Dame

Lucy Family Institute for Data &
Society

Notre Dame, Indiana, USA
nmoniz2@nd.edu

Nitesh V. Chawla
University of Notre Dame

Department of Computer Science &
Engineering and Lucy Family
Institute for Data & Society
Notre Dame, Indiana, USA

nchawla@nd.edu

ABSTRACT
Many evaluation metrics can be used to assess the performance
of models in binary classification tasks. However, most of them
are derived from a confusion matrix in a non-differentiable form,
making it very difficult to generate a differentiable loss function
that could directly optimize them. The lack of solutions to bridge
this challenge not only hinders our ability to solve difficult tasks,
such as imbalanced learning, but also requires the deployment of
computationally expensive hyperparameter search processes in
model selection. In this paper, we propose a general-purpose ap-
proach that transforms any confusion matrix-based metric into a
loss function, AnyLoss, that is available in optimization processes.
To this end, we use an approximation function to make a confu-
sion matrix represented in a differentiable form, and this approach
enables any confusion matrix-based metric to be directly used as
a loss function. The mechanism of the approximation function is
provided to ensure its operability and the differentiability of our
loss functions is proved by suggesting their derivatives. We conduct
extensive experiments under diverse neural networks with many
datasets, and we demonstrate their general availability to target any
confusion matrix-based metrics. Our method, especially, shows out-
standing achievements in dealing with imbalanced datasets, and its
competitive learning speed, compared to multiple baseline models,
underscores its efficiency.

CCS CONCEPTS
• Computing methodologies → Neural networks.

KEYWORDS
Neural Network; Binary Classification; Loss Function; Evaluation
Metrics

ACM Reference Format:
Doheon Han, Nuno Moniz, and Nitesh V. Chawla. 2024. AnyLoss: Trans-
forming Classification Metrics into Loss Functions. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’24), August 25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3637528.3672017

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3672017

Figure 1: Our method in the multi-layer perceptron (MLP)
structure. Input X and weights W generate the net value Z,
and the sigmoid function 𝜎 transform the net value into the
class probability P. The approximation function 𝐴 generates
YH by amplifying the probability P. The confusion matrix is
constructed in a differentiable form by the ground truth Y
and the YH. Consequently, our loss function, AnyLoss, aimed
at any confusion matrix-based metric, is available in a dif-
ferentiable form.

1 INTRODUCTION
Model evaluation is a vital aspect of machine learning, and selecting
an appropriate evaluation metric is a challenging step due to the
availability of multiple metrics [26]. This selection process can be
considered a goal in model development since it is closely related
to the task objectives defined by users and the characteristics of
the data domains. Most of them, such as accuracy or F𝛽 scores, are
derived from a confusion matrix [20], obtained from operations
over discrete values, i.e., labels. Such labels are generated from a
threshold function that transforms continuous values, i.e., class
probabilities, into discrete values, meaning that the confusion ma-
trix is in a non-differentiable form. Importantly, this implies that
confusion matrix-based metrics cannot be used as a goal, i.e., a loss
function, in model development, even though the ultimate goal of
the learning is to achieve a better score for the selected metric.

Mean Squared Error (MSE), L2 loss [6], and Binary Cross Entropy
(BCE) are generally used as loss functions in neural networks [13].
However, they cannot directly target the desired metric, although
indirectly aiming at a higher accuracy, i.e., a lower error rate. There-
fore, several strategies have been suggested to meet the unique
needs of classification tasks. The thresholding strategy finds the
optimal threshold value to get a desired score of a chosen evalu-
ation metric [21, 30], the data pre-processing strategy deals with
raw data issues such as inconsistencies, imbalance, etc. [3], and the
surrogate loss function strategy provides a new loss function that
aimed at the evaluation metric scores [2, 5, 11, 19, 22]. However, the

992

https://orcid.org/0009-0008-9572-0882
https://orcid.org/0000-0003-4322-1076
https://orcid.org/0000-0003-3932-5956
https://doi.org/10.1145/3637528.3672017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3637528.3672017
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3672017&domain=pdf&date_stamp=2024-08-24

KDD ’24, August 25–29, 2024, Barcelona, Spain Doheon Han, Nuno Moniz, & Nitesh V. Chawla

thresholding strategies have some issues like the precision-recall
trade-off [28, 30], and the data pre-processing, such as data resam-
pling, has some issues like overfitting or data losing [8, 29]. The
surrogate loss function strategy that is comparatively free from the
aforementioned issues has been studied, and they are discussed
more in the related work section.

In this paper, we introduce a general-purpose method to gener-
ate a surrogate loss function, AnyLoss, directly aimed at any desired
confusion matrix-based evaluation metric. Our method contains
an approximation function that amplifies the class probability to
build a confusion matrix in a differentiable form. This allows the
estimated metric scores to be calculated before updating weights.
In a neural network for binary classification, class probability is
generated from the sigmoid function after the output layer, i.e., the
probability of being classified as a positive case. The approximation
function amplifies the probability to close to 0 or 1 to be regarded
as the predicted label. The approximated probability can be used
with the ground truth label to build a confusion matrix, and the
evaluation metrics calculated from the matrix are represented in
a differentiable form. The metric scores from the confusion ma-
trix are similar to those of an actual confusion matrix when the
approximated probability is close enough to the predicted label.
Consequently, our method can use any confusion matrix-based
evaluation metric as a loss function to optimize learning processes.

To show the operability of our method in neural networks, we
provide mathematical and experimental analysis for the approxi-
mation function and prove the differentiability of loss functions by
suggesting their derivatives. Extensive experiments using several
datasets are conducted to assess the availability of our method in
single- and multi-layer perceptron structures. The performance
of the experiments shows our method’s ability for generalization,
indicating that our method can indeed be used with any confusion
matrix-based evaluation metric. Our method, especially, shows con-
siderable performance with imbalanced datasets since our method
is available for any desired metric. In addition, our method’s learn-
ing speed is competitive with the baseline models, as demonstrated
by experimental results.

Section 2 introduces related works, and Section 3 explains our
method in detail, including the form of the approximation function
and the derivatives of the selected loss functions. In Section 4, we
demonstrate the effectiveness of our method through experimental
results using various datasets. Section 5 summarizes the strengths
and limitations of our method and concludes this paper.

2 RELATEDWORKS
There have been approaches to optimize the evaluation metric
scores in classification by adopting surrogate loss functions. Some
introduce a method available for a certain metric [2, 5, 19]; in this
case, a unique surrogate loss is suggested for the targeted evaluation
metric. Others provide methods that can generally be used for any
evaluation metric [11, 22], and ours falls into this category. Regard-
less of strategies, methods such as approximating the gradient of
the score, assuming the score in a stochastic setting, or constructing
a temporary confusion matrix have mostly been considered.

2.1 Specific Metric
Most works targeting a specific metric have been pursued optimiz-
ing the F𝛽 score. Lee at el. [19] propose a surrogate loss for the
F𝛽 score inspired by the BCE gradient conditions and the mean
absolute error loss. It is derived from the derivative condition of the
F𝛽 score by approximating its gradient path during learning, and
its form is similar to the BCE loss. Busa-Fekete et al. [5] introduce
a method to optimize F1 score in an online learning environment,
and the method can maximize the score on the population level
with the partially observed data when the i.i.d. setting is assumed.
They consider the problem in a stochastic setting and represent the
F1 score as a function of a variable threshold. Benedict et al. [2] in-
troduce a surrogate loss for the F1 score in multi-label classification.
They applied the method to their study’s text and image datasets,
but it is also available for general classification tasks. They suggest
a surrogate loss function for the F1 score using the smoothed prob-
ability obtained from the sigmoid function. The works are uniquely
designed for each desired metric, so the approach’s availability is
limited in the area targeting a specific metric. The next shows more
general work available for most evaluation metrics.

2.2 General Metrics
Huang et al. [11] suggest the ’MetricOpt’ method, which learns
the approximate metric gradient for a given surrogate loss func-
tion. This method was devised for computer vision tasks, such as
image classification, but also applies to non-image data. It shows
improved results in diverse metrics such as the miss-classification
rate, Jaccard index, and F1 score but slower than standard loss opti-
mization since it includes finetuning steps. This method is generally
more intricate because it operates through additional processes,
such as meta-learning a value function and pre-training a main
model. Marchetti et al. [22] present ‘Score-Oriented Loss’ functions
for binary classification tasks. They try probabilistic methodology,
which sets the threshold used for prediction to a continuous ran-
dom variable. Based on the assumption, a probabilistic confusion
matrix is constructed, and any desired metric can be derived from it.
This method is similar to ours in constructing a confusion matrix to
generate any desired evaluation metric. However, it has additional
processes, such as selecting parameters: the probability distribution,
the uniform or cosine-raised distribution, and two parameters 𝜇
and 𝛿 have to be chosen for the threshold. This method performs
well with their optimized settings compared to the Cross-Entropy
and the Kullback-Leibler divergence. This method has a more com-
plicated process than ours, which can increase learning time. The
appropriate distribution and corresponding parameters must be
found for each task since performance depends on them. Compared
to our simpler approach, this method has a slower learning speed
and includes a relatively time-consuming process of deciding on a
setting for every task, corroborated by experimental results.

3 METHOD
Our method in a multi-layer perception (MLP) structure is shown
in Fig. 1. Input data X = {x𝑖 |x𝑖 = {𝑥𝑖 𝑗 |𝑥𝑖 𝑗 ∈ R, 𝑗 = 1, · · · ,𝑚}, 𝑖 =
1, · · · , 𝑛} with the number of samples n and the number of features
m, and the weights W = {𝑤 𝑗 |𝑤 𝑗 ∈ R, 𝑗 = 0, · · · ,𝑚} generate the
net value Z = {𝑧𝑖 |𝑧𝑖 = 𝑤0 +

∑𝑚
𝑗=1 𝑥𝑖 𝑗 · 𝑤 𝑗 , 𝑖 = 1, · · · , 𝑛}. The class

993

AnyLoss: Transforming Classification Metrics into Loss Functions KDD ’24, August 25–29, 2024, Barcelona, Spain

probability P = {𝑝𝑖 |𝑝𝑖 = 𝜎 (𝑧𝑖), 𝑖 = 1, · · · , 𝑛} is generated from the
sigmoid function 𝜎 . The approximated probability YH = {𝑦ℎ𝑖 |𝑦ℎ𝑖 =
𝐴(𝑝𝑖), 𝑖 = 1, · · · , 𝑛} is calculated from the approximation functionA.
Each value of YH is very close to 0 or 1 so that it can be considered
as the predicted labels Ŷ = {𝑦𝑖 |𝑦𝑖 = 𝑇 (𝑝𝑖), 𝑖 = 1, · · · , 𝑛}. The YH
and the ground truths Y = {𝑦𝑖 |𝑦𝑖 ∈ {0, 1}, 𝑖 = 1, · · · , 𝑛} can build
a confusion matrix, and any evaluation metrics can be generated.
When a desired evaluation metric is set as a loss function, AnyLoss,
the weights will be updated to optimize the loss function.

3.1 Approximation
The role of the approximation function is, in brief, “To make the
A(p𝑖) close to 0 or 1 but not converged to exact 0 or 1 with the
given p𝑖". The mathematical form of the approximation function
is shown as (1). The amplifying scale L is a positive real number,
and 𝑝𝑖 is the given class probability after the sigmoid function. For
its operation, the function A(𝑝𝑖) has to meet the two conditions,
which decide the amplifying scale L. The two conditions are given
in mathematical forms with examples, followed by the analysis for
the proper range of the amplifying scale L.

𝐴(𝑝𝑖) =
1

1 + 𝑒−𝐿 (𝑝𝑖−0.5)
(1)

1𝑠𝑡 Condition: Amplifier. The approximation function should
be able tomake theA(p𝑖) closer to 1, indicating a positive label, if the
given 𝑝𝑖 is closer to 1 than 0, and vice versa. This process amplifies
the class probability 𝑝𝑖 so that the approximated probability A(p𝑖)
can be regarded as actual labels. The mathematical definition of the
first condition is as (2).

|𝐴(𝑝𝑖) − 0.5| ≥ |𝑝𝑖 − 0.5| 𝑂𝑅

{
𝐴(𝑝𝑖) ≥ 𝑝𝑖 , 𝑝𝑖 ≥ 0.5
𝐴(𝑝𝑖) ≤ 𝑝𝑖 , 𝑝𝑖 ≤ 0.5 (2)

If the class probability 𝑝𝑖 is larger than 0.5, theA(p𝑖) should be larger
than the 𝑝𝑖 and close to 1. For instance, if 𝑝𝑖 is 0.7, the approximation
function should generate the A(p𝑖) larger than 0.7 and close to 1
so that we can assume it as an actual label ‘1’. Reversely, if 𝑝𝑖 is
0.2, the approximation function should generate the A(p𝑖) smaller
than 0.2 and close to 0 so that we can assume it as an actual label
‘0’. However, the approximation function with a small value of L
cannot amplify the 𝑝𝑖 in some areas. Fig. 2 shows how a small
L violates the condition. The X-axis and Y-axis represent each 𝑝𝑖
and corresponding A(𝑝𝑖). On the left graph, the L is five, and the
slope is too gentle, so the function does not work as an amplifier
in some areas. For example, the A(p𝑖) is rather larger than the
corresponding 𝑝𝑖 on the point (0.1, 0.12) although 𝑝𝑖 is smaller than
0.5. The approximation function should generate a value smaller
than 0.1, but it does not. A larger Lmakes the function shape steeper.
Therefore, this issue will be solved with a larger L. This shows that
there exists a minimum value of L to ensure the operation of the
approximation function.

2𝑛𝑑 Condition: No 0/1. Each value of A(𝑝𝑖) should be between
0 and 1 as described in (3).

0 < 𝐴(𝑝𝑖) < 1 (3)

If A(𝑝𝑖) values become 0 or 1, of course, it would guarantee a more
accurate calculation of evaluation metric scores since they are the
same as the actual labels. However, it can cause a serious problem,

Figure 2: The approximation function A(𝑝𝑖) with 2 different
L values. On the left, a smaller L, the A(𝑝𝑖=0.1) should be
smaller than 0.1, but it generates 0.12. On the right, a larger
L, the A(𝑝𝑖=0.9) converges to 1.0.

‘No More Update’, because of the form of the partial derivative of
A(𝑝𝑖) as shown in (4). The function A(𝑝𝑖) is part of a loss function
because the loss function is made with the confusion matrix entries,
and it includes YH which is produced by the function A(𝑝𝑖). So the
partial derivative of the loss function includes the partial derivative
of A(𝑝𝑖). The derivative contains both A(𝑝𝑖) and (1-A(𝑝𝑖)) terms, so
any case of A(𝑝𝑖) = 0 or 1 will make the partial derivative 0. The
right graph in Fig. 2 shows that the value of A(𝑝𝑖) can be converged
to 0 or 1. The L is 100, and the slope is steep. The point (0.9, 1.0)
shows the A(𝑝𝑖=0.9) value has converged to 1. Mathematically, the
approximation function is not converged to exact 0 or 1, but it does
in a machine [9]. Therefore, a smaller L should be considered in
this case, which implies that a maximum value of L should exist to
ensure the operation of the approximation function.

𝜕𝐴(𝑝𝑖)
𝜕𝑝𝑖

= 𝐿 · 𝐴(𝑝𝑖) · (1 −𝐴(𝑝𝑖)) (4)

The valid L. The two conditions imply the existence of a suitable
range for L. The first condition shows a minimum L, and the second
shows a maximum L. Fig. 3 shows the four learning curves with four
different L values. The X-axis and Y-axis represent each iteration
number and loss value. When L is 1, the model is not learning well,
and its loss is not small enough. But it gets a smaller loss when L is
5. When L is 10, the learning curve becomes steeper, and the final
loss is smaller, indicating it learns faster and better with a larger L.
However, when L is 100, the model abruptly stops learning because
the ’No More Update’ happens by violating the second condition.

More detailed experimental results are needed to determine the
proper range of L. We have the two sure conditions in a mathemati-
cal form (2, 3) and the range of the input 𝑝𝑖 is set to [0, 1] since it is
the probability. The approximation function A(𝑝𝑖) should be able to
work with any input values when with the valid L. The possible 𝑝𝑖
values are infinite because the probability is continuous, therefore
we adopt the boundary value analysis [27] to cover all possible 𝑝𝑖
values. So the two boundaries, i.e., the two extreme values of the
given range, are chosen for the test. Even for the input values very
close to 0 or 1, the approximation function should amplify them
but not make them converge to exact 0 or 1.

Table 1 shows valid ranges of L with different accuracy levels.
For instance, with the accuracy level of 0.001 in the third row, the
two extreme values 0.001 and 0.999 will not violate the two condi-
tions if L is between 13.85 and 73.62. As such, the approximation
function works with any input values [0.001, 0.999] when L is in the

994

KDD ’24, August 25–29, 2024, Barcelona, Spain Doheon Han, Nuno Moniz, & Nitesh V. Chawla

Figure 3: Learning curves with 4 different L values. A model
is not learning with a small L but is better with a larger L.
However, a model stops learning if a L is too large.

Table 1: The valid range of L. All values between the two 𝑝𝑖
values are well approximated with the given L.

Accuracy Probability Range of L
Level t 𝑝𝑖 = t, 1-t MIN ≤ L ≤ MAX

0.1 0.1, 0.9 5.50 ≤ L ≤ 91.84
0.01 0.01, 0.99 9.38 ≤ L ≤ 74.97
0.001 0.001, 0.999 13.85 ≤ L ≤ 73.62
· · · · · · · · ·
1e-14 1e-14, 1-(1e-14) 64.48 ≤ L ≤ 73.47
1e-15 1e-15, 1-(1e-15) 69.08 ≤ L ≤ 73.47
1e-16 1e-16, 1-(1e-16) 73.69 ≤ L ≤ 73.47

given valid range. If L is selected 13.84, then it will violate the first
condition, Amplifier, and if L is selected 73.63, then it will violate
the second condition, No 0/1. The first and the second conditions
regulate each the minimum and the maximum value of L. There
is no valid range with an accuracy level of 1𝑒−16, so the highest
accuracy level is 1𝑒−15, and we consider an integer within the range
just for convenience. The candidates are 70, 71, 72, and 73, and we
chose 73 since a larger L is learning faster and better according to
the previous observation in Fig. 3.

3.2 AnyLoss
Loss functions in our method consist of the entries of a confusion
matrix, which are True Negative (TN), False Negative (FN), False
Positive (FP), and True Positive (TP). Diverse loss functions can be
generated since they are in a differentiable form. Our loss function,
AnyLoss, is defined as (5), where the f(TN,FN,FP,TP) is a function
of an evaluation metric score represented with a confusion matrix
entries. The score range is [0, 1], and the form is ‘1-score’ so that
the score can be maximized. To demonstrate the general availability
of our method in diverse metrics, accuracy, F𝛽 scores, geometric
mean, and balanced accuracy [4] are chosen. The confusion matrix

in a differentiable form and the derivatives of each loss function
are provided to prove its availability in neural networks.

𝐴𝑛𝑦𝐿𝑜𝑠𝑠 = 1 − 𝑓 (𝑇𝑁, 𝐹𝑁, 𝐹𝑃,𝑇𝑃) (5)
ConfusionMatrix. Ourmethod constructs the confusionmatrix

with the approximated probability YH and the ground truth Y. We
assume that the approximated probability YH is close enough to
the predicted label Ŷ, and this enables the evaluation metric scores
to be estimated before updating weights and used as the goal of
optimization. The four entries of the confusion matrix are described
as (6). This shows that the estimated entries can be approximated
to the actual entries.

𝑇𝑁 (Y, Ŷ ≈ YH) =
𝑛∑︁
𝑖=1

(1 − 𝑦𝑖) (1 − 𝑦𝑖) ≈
𝑛∑︁
𝑖=1

(1 − 𝑦𝑖) (1 − 𝑦ℎ𝑖)

𝐹𝑁 (Y, Ŷ ≈ YH) =
𝑛∑︁
𝑖=1

𝑦𝑖 · (1 − 𝑦𝑖) ≈
𝑛∑︁
𝑖=1

𝑦𝑖 · (1 − 𝑦ℎ𝑖)

𝐹𝑃 (Y, Ŷ ≈ YH) =
𝑛∑︁
𝑖=1

(1 − 𝑦𝑖) · 𝑦𝑖 ≈
𝑛∑︁
𝑖=1

(1 − 𝑦𝑖) · 𝑦ℎ𝑖

𝑇𝑃 (Y, Ŷ ≈ YH) =
𝑛∑︁
𝑖=1

𝑦𝑖 · 𝑦𝑖 ≈
𝑛∑︁
𝑖=1

𝑦𝑖 · 𝑦ℎ𝑖

(6)

Chain Rule. The entries are represented with composite func-
tions through the process described in Fig. 1. Therefore, the func-
tional form of AnyLoss is shown as in (7). The chain rule [12] is
needed as shown in (8), the first term, 𝜕𝐴𝑛𝑦𝐿𝑜𝑠𝑠

𝜕𝑦ℎ𝑖
, depends on each

loss function, and the rest are calculated as (9).

𝐴𝑛𝑦𝐿𝑜𝑠𝑠 = 𝑓 (𝑦ℎ𝑖 (𝑝𝑖 (𝑧𝑖 (𝑥𝑖 ,W)))) (7)

𝜕𝐴𝑛𝑦𝐿𝑜𝑠𝑠

𝜕W
=

𝜕𝐴𝑛𝑦𝐿𝑜𝑠𝑠

𝜕𝑦ℎ𝑖
× 𝜕𝑦ℎ𝑖

𝜕𝑝𝑖
× 𝜕𝑝𝑖

𝜕𝑧𝑖
× 𝜕𝑧𝑖

𝜕W
(8)

𝜕𝑦ℎ𝑖

𝜕W
= [𝐿 · 𝑦ℎ𝑖 · (1 − 𝑦ℎ𝑖)] × [𝑝𝑖 · (1 − 𝑝𝑖)] × [x𝑖] (9)

Diverse Loss Functions. AnyLoss indicates loss functions that
can target any confusion matrix-based metric, so diverse loss func-
tions exist according to the targeted metric as depicted in (10).

𝐿𝐴 = 1 −𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝑇𝑃 +𝑇𝑁
𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐿𝐹 = 1 − 𝐹𝛽𝑠𝑐𝑜𝑟𝑒 = 1 − (1 + 𝛽2)𝑇𝑃
(1 + 𝛽2)𝑇𝑃 + 𝐹𝑃 + 𝛽2𝐹𝑁

𝐿𝐺 = 1 −𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑒𝑎𝑛 = 1 −
√︂

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝐿𝐵 = 1 − 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐. = 1 − 1
2
× (𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
)

(10)

Partial Derivative of AnyLoss. How to calculate the partial
derivative of the loss function aiming at accuracy, 𝐿𝐴 , is addressed
as an example. Still, the calculations for other loss functions that
follow the same process are explained in Appendix A. The 𝐿𝐴 is
represented as (11) with the entries (6), and the first term of (8)
for 𝐿𝐴 , 𝜕𝐿𝐴

𝜕𝑦ℎ𝑖
, is derived as (12), so the partial derivative of 𝐿𝐴 is

calculated as (13).

995

AnyLoss: Transforming Classification Metrics into Loss Functions KDD ’24, August 25–29, 2024, Barcelona, Spain

𝐿𝐴 = 1 −
∑𝑛
𝑖=1 1 −

∑𝑛
𝑖=1 𝑦𝑖 −

∑𝑛
𝑖=1 𝑦ℎ𝑖 + 2(∑𝑛

𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)
𝑛

(11)

𝜕𝐿𝐴

𝜕𝑦ℎ𝑖
=

∑𝑛
𝑖=1 𝑦ℎ

′
𝑖
− 2(∑𝑛

𝑖=1 𝑦𝑖 · 𝑦ℎ′𝑖)
𝑛

(12)

𝜕𝐿𝐴

𝜕W
=

∑𝑛
𝑖=1

𝜕𝑦ℎ𝑖
𝜕W − 2(∑𝑛

𝑖=1 𝑦𝑖 ·
𝜕𝑦ℎ𝑖
𝜕W)

𝑛
(13)

4 EXPERIMENTS
Extensive experiments demonstrate the availability of our method
and its effectiveness by suggesting improved scores against the base-
line models. In addition, the performance with imbalanced datasets
and the analysis of the learning speed of our method strengthens
its efficiency. The experiments are executed in the SLP structure,
which is a feed-forward network, and the MLP structure, which
uses a back-propagation algorithm so that we can show that our
method applies to any type of neural network. The MLP network
contains one hidden layer with two nodes, and batch normalization
is used at each layer. We set the two baselines, the first is MSE
which equals the sum of squared error, the initial perceptron’s loss
function with the delta rule [23]. Another is the BCE, a represen-
tative loss function widely used for classification [11] and has a
solid theoretical background in neural networks [22]. The 10-fold
cross-validation is used for the robust results instead of splitting
train and test data, so the scores indicate the mean of validation
scores. In addition, only the results of accuracy, F1 score, and bal-
anced accuracy are shown here for conciseness, and the full results,
including all metrics, are shown in Appendix B. We have research
questions for our method as follows:

• Can AnyLoss generate optimized scores for any targeted
metric regardless of datasets? (4.1)

• Is AnyLoss more efficient with imbalanced datasets? (4.1, 4.2)
• Is the learning speed of AnyLoss competitive against the
baselins? (4.3)

The two groups of datasets are selected to discover the research
questions. The first group contains 102 general datasets with diverse
properties to see if our method can work regardless of the datasets.
The second group contains four imbalanced datasets, and the results
will show how well our method works with imbalanced datasets by
providing more specific results. As common settings, 1,000 epochs
for the SLP and 100 epochs for the MLP are applied. The learning
rates and the batch sizes in the MLP are different for each loss
function. The detailed settings for experiments are included in the
full results in Appendix B.

4.1 Performance on 102 Diverse Datasets
We conduct experiments with 102 diverse datasets and the datasets
were initially collected for the imbalanced classification work [24].
The datasets are depicted as having multiple domains and diverse
characteristics by the author, and their metadata is shown in Table 2.
The description of each dataset is shown in Table 14 in the Appendix.
They can provide the diversity required for this experiment since
they have different properties regarding the dataset size, the number
of features, and imbalance ratios. The imbalance ratio, the 4th

column, shows the ratio of major cases versus minor cases, which
are considered positive. The experiments with these datasets can
demonstrate our method’s availability in diverse datasets.

Table 2: Metadata of 102 Diverse Datasets. Datasets have dif-
ferent properties, such as the dataset size, feature numbers,
and imbalance ratios.

Metrics # Samples # Features Imb. Rat.

mean 1930.89 37.55 5.35:1
std 2209.16 52.88 3.62:1
min 250.00 2.00 1.54:1
max 9961.00 299.00 16.43:1

Experimental Results in both SLP and MLP structures are shown
in Table 3. The numbers indicate each winning number; for in-
stance, for Acc, our AnyLoss L𝐴 in the SLP structure achieves a
better accuracy score than MSE and BCE in 69 datasets out of a
total of 102 datasets. For other metrics, our loss functions show
larger winning numbers, meaning our loss functions perform bet-
ter against baseline models in more datasets for the corresponding
evaluation metric. The specific settings for each loss function are
shown in Table 15 and Table 16 in the Appendix.

Table 3: Statistical results on 102 datasets. The numbers indi-
cate the datasets with each loss function winning with the
corresponding metric.

Evaluation SLP MLP

Metrics MSE BCE OURS MSE BCE OURS

Acc 13 20 69 16 20 66
F-1 2 10 90 5 3 94

B-Acc 4 9 89 4 4 94

AnyLoss mostly dominates the two baselines, but it is not easy
to define quantitatively their effectiveness. Therefore, we adopt
the Bayesian Sign Test [1], which measures the probability that
one model is better than another based on the experiment results.
This test provides the probabilities of AnyLoss winning, drawing,
or losing against each baseline model. The graphical results of
the test are shown in Fig. 4. The first two figures represent the
results in the SLP structure, and the rest show the results in the
MLP structure. The r represents the rope that decides a region
of practical equivalence [1]. The test captures a little difference
between the two models when the r is small and distinguishes
them to declare which one is better. Reversely, when with a larger
r, the test does not distinguish the two models without a large
difference, and it more likely judges them as similar in performance.
The authors in [1, 18] address that it is reasonable that two models
whose mean difference of scores is less than 1% are considered
practically equivalent. Therefore, we provide the results with r=0.01
and r=0.05 for further analysis. For each metric on the X-axis, M
and B indicate each MSE and BCE. The Y-axis shows the probability
of AnyLoss winning, drawing, or losing against the corresponding

996

KDD ’24, August 25–29, 2024, Barcelona, Spain Doheon Han, Nuno Moniz, & Nitesh V. Chawla

Figure 4: The winning probability of AnyLoss against baseline models in stacked bar graphs, with the bottom for losing, the
middle for drawing, and the top for winning. M and B represent, respectively, MSE and BCE. In the SLP, AnyLoss mostly has a
larger winning probability against baseline models. In some cases, a larger drawing probability is observed. In the MLP, the
results are similar to those in the SLP, but more cases with a larger drawing probability are observed. And there are no red
colors, meaning no cases of AnyLoss losing.

baseline model. They are stacked with the bottom for losing, the
middle for drawing, and the top for winning. The sum of the three
probabilities, the height of all bars, is 1.00. The first bar in the first
figure (SLP, r:0.01) shows that AnyLoss, L𝐴 , has both probabilities
of winning and drawing. However, the area for drawing is much
larger, which indicates L𝐴 has a larger probability of drawing and
a little probability of winning against MSE in terms of the accuracy
score. In the second figure, when with a larger r=0.05, AnyLoss
generally has a larger drawing probability compared to when r=0.01
since a little difference is ignored. In the SLP structure, our loss
functions mostly have a larger winning probability against the
two baseline models except for accuracy. The results in the MLP
structure are very similar to those in the SLP. The red color is not
observed in any graph, which means that the probability of MSE or
BCE being better than AnyLoss is 0 for all metrics. Consequently,
AnyLoss shows mostly better performance of all metrics except for
accuracy on 102 general datasets. Considering the objective of the
two baselines, pursuing higher accuracy, our method shows good
performance, which was our intention. The numerical results of
the test are shown in Table 15 and Table 16 in the Appendix.

To observe if our method works better with imbalanced datasets,
we classify 102 datasets into four groups based on their imbalance
ratios.Whether better or not has been shown in the previous results,
now we provide how much better AnyLoss against each baseline
model in Table 4. The symbol Δ means the difference, therefore
the results indicate ‘AnyLoss score - baseline score’. For example,
the 31 datasets in the first group have imbalance ratios between
60:40 and 70:30, and AnyLoss accuracy score is better than MSE
as 0.017 of mean ± 0.035 of standard deviation. Accuracies show
irregular patterns. However, there is a tendency for the F-1 score
and balanced accuracy, a larger difference in the group of highly
imbalanced datasets. From top to bottom, little imbalanced to highly
imbalanced, differences become larger, which means our method
works better with more imbalanced datasets. This result shows
that AnyLoss can be more suitable than the two baseline models in
dealing with highly imbalanced datasets.

4.2 Performance on 4 Imbalanced Datasets
We conduct experiments with 4imbalanced datasets to observe our
method’s availability with imbalanced datasets, and their descrip-
tions are shown in Table 5. The first dataset is generated with the

Table 4: The effect of our method in different groups based
on imbalance ratios. The symbol Δ indicates the difference,
meaning how much our method is better than each model.
The numbers mean ‘AnyLoss score - baseline score’. From top
to bottom, datasets are more imbalanced, and larger scores
are observed, which indicates our method performs better
in more imbalanced datasets.

Eva. SLP MLP

Met. Δ MSE Δ BCE Δ MSE Δ BCE

Imbalance Ratio: 60:40 ∼ 70:30 | 31 Datasets
Acc 0.017±0.035 0.007±0.029 0.004±0.025 0.009±0.016
F-1 0.081±0.095 0.057±0.092 0.040±0.100 0.040±0.091
B-A 0.043±0.052 0.026±0.049 0.007±0.046 0.009±0.044

Imbalance Ratio: 70:30 ∼ 80:20 | 19 Datasets
Acc 0.021±0.029 0.017±0.027 -0.058±0.207 -0.062±0.207
F-1 0.186±0.156 0.142±0.132 0.114±0.117 0.096±0.124
B-A 0.086±0.065 0.067±0.057 0.067±0.061 0.055±0.056

Imbalance Ratio: 80:20 ∼ 90:10 | 37 Datasets
Acc 0.008±0.021 0.002±0.009 0.002±0.006 0.002±0.007
F-1 0.208±0.209 0.122±0.131 0.138±0.144 0.137±0.151
B-A 0.128±0.120 0.084±0.086 0.084±0.080 0.079±0.082

Imbalance Ratio: 90:10 ∼ | 15 Datasets
Acc 0.004±0.008 0.001±0.005 0.002±0.009 0.004±0.009
F-1 0.304±0.144 0.167±0.127 0.253±0.179 0.222±0.127
B-A 0.226±0.097 0.170±0.088 0.152±0.076 0.128±0.076
score: mean ± standard deviation

Scikitlearn library datasets.make_classification, and others are col-
lected from Kaggle. For Credit Card [16] and Breast Cancer [14]
datasets, we intentionally make them more imbalanced using the
Python library sample. In addition, we adopt one of the SOTA surro-
gate approaches, the Score-Oriented Loss (SOL) [22] for comparison.
SOL proposes a similar approach to ours, constructing a confusion
matrix to generate any metric, therefore we compare it with ours.

Experimental Results in both SLP and MLP structures are shown
in Table 6. The table provides only one corresponding metric that
each AnyLoss aims at. For example, L𝐴 is made for higher accuracy,

997

AnyLoss: Transforming Classification Metrics into Loss Functions KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 5: Description of 4 Imbalanced Datasets

Datasets # Samples # Features Imb. Rat.

#1. Random 10,000 2 9:1
#2. Credit Card [16] 298,531 29 20:1
#3. Breast Cancer [14] 393 30 10:1
#4. Diabetes [17] 100,000 8 11:1

so we only present the accuracy score of it. In the first row, 0.922
is the accuracy score of L𝐴 , and 0.632 in the second row is the F-1
score of L𝐹1 . The scores of our AnyLoss are similar to SOL in the SLP
and mostly better than SOL in the MLP structure but the differences
are not large. Baseline models generally show good performance
only for accuracy and large differences for other metrics. The full
experiment results including other metric scores of each AnyLoss
are shown in Table 17 and Table 18 in the Appendix. The results
in Table 6 show that it is possible to get an optimized score of the
desired metric with AnyLoss in imbalanced datasets.

Table 6: Scores on four imbalanced datasets. AnyLoss and
SOL show similar performance and are better than the two
baseline models. In particular, large differences are observed
in metrics other than accuracy.

Eva SLP MLP

Met MSE BCE SOL OUR MSE BCE SOL OUR

#1. Random
Acc 0.898 0.921 0.922 0.922 0.920 0.924 0.923 0.925
F-1 0.075 0.546 0.634 0.632 0.527 0.590 0.636 0.637
B-A 0.519 0.714 0.875 0.875 0.711 0.748 0.858 0.862

#2. Credit Card
Acc 0.989 0.990 0.991 0.990 0.991 0.994 0.992 0.994
F-1 0.880 0.884 0.896 0.903 0.889 0.929 0.944 0.946
B-A 0.894 0.897 0.957 0.957 0.904 0.942 0.950 0.957

#3. Breast Cancer
Acc 0.979 0.984 0.980 0.987 0.982 0.995 0.985 0.995
F-1 0.863 0.901 0.922 0.901 0.833 0.966 0.955 1.000
B-A 0.887 0.927 0.965 0.963 0.900 0.971 0.975 0.983

#4. Diabetes
Acc 0.939 0.959 0.898 0.960 0.956 0.960 0.961 0.961
F-1 0.453 0.710 0.670 0.732 0.655 0.717 0.736 0.736
B-A 0.647 0.790 0.880 0.885 0.766 0.793 0.865 0.877

Table 7 compares our method with resampling strategies on the
four datasets in the SLP structure. The resampling strategies are
applied only to BCE since it is better thanMSE in the previous exper-
iments. BSO indicates BCE with SMOTE [7], and BRU means BCE
with the random under-sampling. As for a resampling rate, we try
multiple (major : minor) rates from (1:1) to (1:0.1) with 0.1 intervals,
and the result with the highest F-1 score is chosen from the results
from all different rates. Over-sampling and under-sampling strate-
gies show improved results w.r.t. basic BCE, with scores similar to
those of AnyLoss. On the other hand, our method does not distort
data distribution and achieves a goal at once without multiple times
of experiments to choose the best.

Table 7: Comparison with resampling strategies. BSO and
BRU indicate BCE with SMOTE and BCE with random under-
sampling. Both strategies improve performance, but AnyLoss
still shows competitive results.

Eva. SLP
Met. BSO BRU OURS BSO BRU OURS

#1. Random #3. Breast Cancer
Acc 0.915 0.916 0.922 0.987 0.984 0.987
F-1 0.637 0.637 0.632 0.930 0.914 0.901
B-A 0.823 0.821 0.875 0.970 0.965 0.963

#2. Credit Card #4. Diabetes
Acc 0.992 0.992 0.990 0.959 0.959 0.960
F-1 0.912 0.913 0.903 0.727 0.727 0.732
B-A 0.932 0.932 0.957 0.809 0.809 0.885

4.3 Learning Time
Wemeasure the learning time ofAnyLoss, SOL, and the two baseline
models in the same epochs, and this shows the pure learning time
per epoch, i.e., learning speed. We also analyze the loss curve to
conjecture the required epochs for each method. This gives us
inspiration about the practical learning time of each method.

Learning Speed. Under the same number of epochs, wemeasure
the learning time of AnyLoss, SOL, and the two baseline models
with the four imbalanced datasets in both SLP and MLP structures.
The same condition is required for all loss functions, so the same
settings, learning rates, and batch sizes are applied instead of the
already used settings. The results are as Table 8. The ratios are

Table 8: Ratios of learning time based on BCE’s learning
time with the four datasets. L𝑚𝑒𝑎𝑛 and S𝑚𝑒𝑎𝑛 mean each the
average ratio of all Anyloss and SOL. In both SLP and MLP
structures, MSE is faster than BCE, AnyLoss is similar to BCE,
and the SOL is the slowest.

Data SLP MLP

sets MSE S𝑚𝑒𝑎𝑛 L𝑚𝑒𝑎𝑛 MSE S𝑚𝑒𝑎𝑛 L𝑚𝑒𝑎𝑛

#1 1.001 1.120 1.005 0.888 1.158 1.031

#2 0.893 1.175 0.968 0.783 1.090 0.993

#3 0.821 1.103 0.901 0.994 1.156 1.011

#4 0.905 1.151 1.041 0.804 1.082 0.987
The standard is BCE’s learning time, i.e., BCE: 1.00.

calculated based on the learning time of BCE, therefore the ratios in
the table are calculated as its learning time divided by the learning
time of BCE. The differences among learning times of all AnyLoss
are small, so we used their average value, L𝑚𝑒𝑎𝑛 . In the same sense,
S𝑚𝑒𝑎𝑛 indicates the average value of all SOL functions. The ratios
are learning speed because the result times are based on the same
number of epochs. The results are similar in both the SLP and
MLP structures. MSE is faster than BCE, AnyLoss is similar to BCE,
and SOL is the slowest. Our method shows a competitive learning

998

KDD ’24, August 25–29, 2024, Barcelona, Spain Doheon Han, Nuno Moniz, & Nitesh V. Chawla

speed against BCE since our approach includes one more step, the
approximation step. Its calculation is simple, so it rarely affects the
learning time. On the other hand, SOL shows slower speed due to
its complicated process. This result shows the competitiveness of
our method in terms of pure learning speed in neural networks.

Practical Learning Time. In reality, the more important figure
about learning time is the practically required time for learning,
not pure speed. We measured the pure learning time in the previ-
ous step; however, the amount of time needed for learning is not
explained by the unit learning speed because it largely depends on
the required epochs. Therefore, we analyze the loss learning curves
to discover each method’s practical required number of epochs.
We choose BCE and AnyLoss, the fastest learning speed for this
experiment. Different learning rates for each method have to be ap-
plied since they decide the slope of the curve and performance. For
example, if we increase the learning rate for a certain loss function,
it may learn faster, but it does not guarantee the best performance.
We already have the appropriate learning rates used for the previ-
ous experiments, so they are used for this experiment. Fig. 5 shows
how fast each method learns and converges to its minimum loss
value. The X-axis and Y-axis represent each the number of epochs

Figure 5: The learning curves BCE vs. AnyLoss. They show
similar slopes in dataset 1, andAnyLoss shows a steeper slope
in other datasets, meaning it learns faster and needs fewer
epochs to achieve its optimal point.

and loss value. The red line represents BCE’s learning curve, and
the blue lines show all AnyLoss, i.e. L𝐴 , L𝐹1, etc. The minimum loss
value of each function is different since they have their own goal
defined by different loss functions. The first graph, ‘Loss Curve #1’
shows the results on the first dataset, and the slopes of all lines look
similar. Before the 100 epochs, they seem to have mostly achieved
the minimum values. However, in the other three graphs, the slopes
of the blue lines look steeper than those of BCE. For a more detailed
analysis, we calculate the achievement rate, described as (14).

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑜𝑠𝑠 −𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑜𝑠𝑠

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑜𝑠𝑠 − 𝐹𝑖𝑛𝑎𝑙𝐿𝑜𝑠𝑠
(14)

This rate indicates how much loss decreased by a certain period of
epochs. For instance, if the initial loss value is 1.0, the loss value

is 0.7 when the epoch is 100, and the final loss value is 0.4, then it
decreases a total of 0.6 for a whole period of epochs. It decreases
by 0.3 for the first 100 epochs. Therefore, the achievement rate
at epoch 100 is 0.5, and the rate at the last epoch is always 1.0.
Table 9 shows the results of the achievement rates, and L𝑚𝑒𝑎𝑛 is the
average of the achievement rates of all AnyLoss. In the first dataset,
the two achievement rates are similar, and the difference is not
large. In other datasets, the average achievement rate of AnyLoss is
larger than BCE at all epochs, which indicates AnyLoss generally
learns faster than BCE. Consequently, AnyLoss normally needs a
smaller number of epochs leading to a shorter learning time.

Table 9: Achievement rates on four datasets

Data Loss Epoch
sets Fun. 100 200 300 400 500 1,000

#1 BCE 0.930 0.974 0.987 0.993 0.996 1.0
L𝑚𝑒𝑎𝑛 0.951 0.973 0.982 0.987 0.991 1.0

#2 BCE 0.790 0.904 0.945 0.965 0.977 1.0
L𝑚𝑒𝑎𝑛 0.970 0.980 0.984 0.987 0.989 1.0

#3 BCE 0.904 0.949 0.967 0.978 0.984 1.0
L𝑚𝑒𝑎𝑛 0.961 0.978 0.985 0.990 0.993 1.0

#4 BCE 0.838 0.922 0.953 0.969 0.979 1.0
L𝑚𝑒𝑎𝑛 0.959 0.978 0.985 0.990 0.993 1.0

5 ADDITIONAL EXPERIMENTAL RESULTS
To reinforce our argument on the availability ofAnyLoss, we provide
more experimental results with an advanced MLP architecture and
a larger dataset. In addition, we present the performance change
results along with the change of the amplifying scale L to support
our approach suggested in the previous section to determine a good
L value of the approximation function.

5.1 Advanced Architecture
The SLP and MLP structures were chosen for the analysis from the
perspective of neural networks, but they may not be enough to
prove the effectiveness of our method convincingly. Therefore, we
provide more experimental results with an advanced MLP archi-
tecture. We did an image classification task with the ResNet50 [10]
and the MNIST_784 [25] dataset. The dataset originally had 10 class
labels, so we chose one class label as a positive case to make a
binary classification task and others were given a negative label.
The results support that AnyLoss still works with more complex
architecture as shown in Table 10.

5.2 Large Dataset
In terms of dataset size, a new loss function should properly work
with any size of datasets, therefore, we provide experiment results
with a large dataset, Huge Titanic [15] (#samples: 799,603, #features:
7, imbalance ratio: 0.62:0.38). The original number of samples is
a million but the dataset contains many missing data, so we used
799,603 after pre-processing. Table 11 shows that AnyLoss works
well in both structures with any metrics.

999

AnyLoss: Transforming Classification Metrics into Loss Functions KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 10: Scores of different loss functions in the ResNet50
architecture with the MNIST_784 dataset. AnyLoss shows
better performance in each evaluation metric.

Metrics MSE BCE OURS

Acc 0.994 0.994 0.998
F-1 0.965 0.965 0.980
B-A 0.972 0.970 0.980

Table 11: Scores on theHuge Titanic dataset.AnyLoss is better
than the two baselinemodels in both SLP andMLP structures.

Eva SLP MLP

Met MSE BCE OURS MSE BCE OURS

Acc 0.800 0.806 0.814 0.807 0.814 0.822
F-1 0.726 0.734 0.739 0.730 0.729 0.746
B-A 0.780 0.786 0.788 0.783 0.784 0.796

5.3 Determination of L
Determination of the amplifying scale L is essential for the ap-
proximation function since it decides how to amplify the given
probability from the Sigmoid function. As discussed earlier, an in-
valid value of L can cause malfunctioning of the approximation
function, and then it will not provide the desired results even if it
looks working properly. So, we executed experiments to observe
how performances change along with the change of the amplifying
scale L. The experiment results in the MLP structure with different
L values on different datasets are shown in Table 12 and Table 13.
We used 5 different L values including 73 which has been used as a
value of L in this paper. The 3 evaluation metrics are calculated on
the 4 imbalanced datasets and 102 diverse datasets as done earlier.
In the results, the value of 73 shows better performance than others
but the difference is not large. Therefore, this topic, determining a
good L, can be considered as future work.

6 CONCLUSION
In this paper, we introduce AnyLoss, which can aim at a specific
confusion matrix-based evaluation metric with the approximation
function. Our method enables any confusion matrix-based metric
to be directly set as a goal of learning, i.e., loss function, in a neu-
ral network architecture to achieve a unique goal of the binary
classification task. With mathematical approaches, we prove that
AnyLoss are differentiable and provide their derivatives. Analysis
of the approximation function provided with experiments helps
users use it more efficiently in practice. Extensive experiment re-
sults demonstrate that our method achieves a goal in both SLP
and MLP structures with diverse datasets while maintaining a com-
petitive learning time. It, especially, shows considerable perfor-
mance in imbalanced datasets although it is available with any
type of dataset. A similar approach to handling multi-class clas-
sification tasks or determining a good value of L to improve its
efficiency can be interesting research topics for future research. All

Table 12: Scores on 4 imbalanced datasets with different L.
The value 73 which we chose earlier mostly shows the best
score in each dataset and evaluation metric even though big
differences are not observed.

Dataset Metric L=30 L=50 L=73 L=90 L=110

Random Acc 0.915 0.923 0.924 0.895 0.922
Generated F-1 0.636 0.632 0.637 0.634 0.635

B-A 0.840 0.834 0.852 0.826 0.825

Credit Acc 0.952 0.994 0.995 0.994 0.994
Card F-1 0.935 0.942 0.945 0.945 0.944

B-A 0.950 0.915 0.962 0.956 0.871

Breast Acc 0.998 0.995 1.000 0.997 0.997
Cancer F-1 0.980 0.980 0.989 0.980 0.969

B-A 0.949 0.950 1.000 0.989 0.996

Diabetes Acc 0.948 0.961 0.961 0.961 0.961
Prediction F-1 0.728 0.733 0.736 0.735 0.734

B-A 0.837 0.859 0.882 0.832 0.826

Table 13: Scores on 102 diverse datasets with different L. Each
number in the table indicates the winning number, i.e., a
model with L=73 shows the best score in 31 out of 102 datasets.
The value 73 shows the best winning number.

Metric L=30 L=50 L=73 L=90 L=110

Acc 21 18 31 21 24
F-1 21 19 27 21 16
B-A 17 20 26 17 23

the datasets and codes used for the experiments are available at
https://github.com/doheonhan/anyloss.

REFERENCES
[1] Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaffalon. 2017. Time

for a change: a tutorial for comparing multiple classifiers through Bayesian
analysis. The Journal of Machine Learning Research 18, 1 (2017), 2653–2688.

[2] Gabriel Bénédict, Vincent Koops, Daan Odijk, and Maarten de Rijke. 2021. Sig-
moidF1: A smooth F1 score surrogate loss for multilabel classification. arXiv
preprint arXiv:2108.10566 (2021).

[3] Houda Benhar, Ali Idri, and JL Fernández-Alemán. 2020. Data preprocessing for
heart disease classification: A systematic literature review. Computer Methods
and Programs in Biomedicine 195 (2020), 105635.

[4] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M
Buhmann. 2010. The balanced accuracy and its posterior distribution. In 2010
20th international conference on pattern recognition. IEEE, 3121–3124.

[5] Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczynski, and Eyke Hüller-
meier. 2015. Online f-measure optimization. Advances in Neural Information
Processing Systems 28 (2015).

[6] Tianfeng Chai and Roland R Draxler. 2014. Root mean square error (RMSE)
or mean absolute error (MAE). Geoscientific model development discussions 7, 1
(2014), 1525–1534.

[7] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[8] Vaishali Ganganwar. 2012. An overview of classification algorithms for im-
balanced datasets. International Journal of Emerging Technology and Advanced
Engineering 2, 4 (2012), 42–47.

[9] David Goldberg. 1991. What every computer scientist should know about floating-
point arithmetic. ACM computing surveys (CSUR) 23, 1 (1991), 5–48.

1000

KDD ’24, August 25–29, 2024, Barcelona, Spain Doheon Han, Nuno Moniz, & Nitesh V. Chawla

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[11] Chen Huang, Shuangfei Zhai, Pengsheng Guo, and Josh Susskind. 2021. Met-
ricOpt: Learning To Optimize Black-Box Evaluation Metrics. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
174–183.

[12] HN Huang, SAM Marcantognini, and NJ Young. 2006. Chain rules for higher
derivatives. The Mathematical Intelligencer 28, 2 (2006), 61–69.

[13] Katarzyna Janocha and Wojciech Marian Czarnecki. 2017. On loss functions for
deep neural networks in classification. arXiv preprint arXiv:1702.05659 (2017).

[14] Kaggle. 2021. Breast Cancer Dataset. Retrieved October 2, 2023 from https:
//www.kaggle.com/datasets/yasserh/breast-cancer-dataset

[15] Kaggle. 2022. Titanic Huge Dataset - 1M Passengers. Retrieved May 21,
2024 from https://www.kaggle.com/datasets/marcpaulo/titanic-huge-dataset-
1m-passengers

[16] Kaggle. 2023. Credit Card Fraud Detection Dataset 2023. Retrieved October 2,
2023 from https://www.kaggle.com/datasets/nelgiriyewithana/credit-card-fraud-
detection-dataset-2023

[17] Kaggle. 2023. Diabetes prediction dataset. Retrieved October 2, 2023 from
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset

[18] John K Kruschke and Torrin M Liddell. 2015. The Bayesian new statistics: Two
historical trends converge. SSRN Electronic Journal 2606016 (2015), 26.

[19] Namgil Lee, Heejung Yang, and Hojin Yoo. 2021. A surrogate loss function for
optimization of F𝛽 score in binary classification with imbalanced data. arXiv
preprint arXiv:2104.01459 (2021).

[20] Jake Lever. 2016. Classification evaluation: It is important to understand both
what a classification metric expresses and what it hides. Nature methods 13, 8
(2016), 603–605.

[21] Zachary C Lipton, Charles Elkan, and Balakrishnan Naryanaswamy. 2014. Op-
timal thresholding of classifiers to maximize F1 measure. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2014,
Nancy, France, September 15-19, 2014. Proceedings, Part II 14. Springer, 225–239.

[22] F. Marchetti, S. Guastavino, M. Piana, and C. Campi. 2022. Score-Oriented Loss
(SOL) functions. Pattern Recognition 132 (2022), 108913. https://doi.org/10.1016/
j.patcog.2022.108913

[23] Tom M Mitchell. 1997. Machine learning.
[24] Nuno Moniz and Vitor Cerqueira. 2021. Automated imbalanced classification via

meta-learning. Expert Systems with Applications 178 (2021), 115011.
[25] OpenML. 2014. mnist_784. Retrieved May 21, 2024 from https://openml.org/

search?type=data&status=active&id=554&sort=runs
[26] Sebastian Raschka. 2018. Model evaluation, model selection, and algorithm

selection in machine learning. arXiv preprint arXiv:1811.12808 (2018).
[27] Stuart C Reid. 1997. An empirical analysis of equivalence partitioning, boundary

value analysis and random testing. In Proceedings Fourth International Software
Metrics Symposium. IEEE, 64–73.

[28] Yiming Yang. 2001. A study of thresholding strategies for text categorization. In
Proceedings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval. 137–145.

[29] Yage Yuan, Jianan Wei, Haisong Huang, Weidong Jiao, Jiaxin Wang, and Hualin
Chen. 2023. Review of resampling techniques for the treatment of imbalanced
industrial data classification in equipment condition monitoring. Engineering
Applications of Artificial Intelligence 126 (2023), 106911.

[30] Quan Zou, Sifa Xie, Ziyu Lin, Meihong Wu, and Ying Ju. 2016. Finding the best
classification threshold in imbalanced classification. Big Data Research 5 (2016),
2–8.

A CALCULATION OF PARTIAL DERIVATIVES
A.1 F-beta scores
The loss function aiming at F-𝛽 , 𝐿𝐹 , is represented as (15) with the
confusion matrix (6). The first term of (8) for 𝐿𝐹 is as (16). The
partial derivative of 𝐿𝐹 is as (17).

𝐿𝐹 = 1 −
(1 + 𝛽2) (∑𝑛

𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)
𝛽2

∑𝑛
𝑖=1 𝑦𝑖 +

∑𝑛
𝑖=1 𝑦ℎ𝑖

(15)

𝜕𝐿𝐹

𝜕𝑦ℎ𝑖
= −(1 + 𝛽2)×

(∑𝑛
𝑖=1 𝑦𝑖 ·𝑦ℎ′

𝑖) (𝛽2
∑𝑛

𝑖=1 𝑦𝑖+
∑𝑛

𝑖=1 𝑦ℎ𝑖)−(∑𝑛
𝑖=1 𝑦ℎ

′
𝑖) (

∑𝑛
𝑖=1 𝑦𝑖 ·𝑦ℎ𝑖)

(𝛽2 ∑𝑛
𝑖=1 𝑦𝑖+

∑𝑛
𝑖=1 𝑦ℎ𝑖)2

(16)

𝜕𝐿𝐹

𝜕W
= −(1 + 𝛽2)×

(∑𝑛
𝑖=1 𝑦𝑖 ·

𝑑𝑦ℎ𝑖
𝑑W) (𝛽2 ∑𝑛

𝑖=1 𝑦𝑖+
∑𝑛

𝑖=1 𝑦ℎ𝑖)−(∑𝑛
𝑖=1

𝑑𝑦ℎ𝑖
𝑑W) (∑𝑛

𝑖=1 𝑦𝑖 ·𝑦ℎ𝑖)
(𝛽2 ∑𝑛

𝑖=1 𝑦𝑖+
∑𝑛

𝑖=1 𝑦ℎ𝑖)2

(17)

A.2 Geometric Mean
The loss function aiming at geometric mean, 𝐿𝐺 , is represented as
(18) with the confusion matrix (6). The first term of (8) for 𝐿𝐺 is as
(19). The partial derivative of 𝐿𝐺 is as (20).

𝐿𝐺 = 1 −
√︂

(∑𝑛
𝑖=1 𝑦𝑖 ·𝑦ℎ𝑖) (𝑛−

∑𝑛
𝑖=1 𝑦𝑖−

∑𝑛
𝑖=1 𝑦ℎ𝑖+

∑𝑛
𝑖=1 𝑦𝑖 ·𝑦ℎ𝑖)

(∑𝑛
𝑖=1 𝑦𝑖) (𝑛−

∑𝑛
𝑖=1 𝑦𝑖)

(18)

𝜕𝐿𝐺

𝜕𝑦ℎ𝑖
=

−2√︃
(∑𝑛

𝑖=1 𝑦𝑖) (𝑛 −∑𝑛
𝑖=1 𝑦𝑖)

×

[
(∑𝑛

𝑖=1 𝑦𝑖 · 𝑦ℎ′𝑖) (𝑛 −∑𝑛
𝑖=1 𝑦𝑖 −

∑𝑛
𝑖=1 𝑦ℎ𝑖 +

∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)√︃

(∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖) (𝑛 −∑𝑛

𝑖=1 𝑦𝑖 −
∑𝑛
𝑖=1 𝑦ℎ𝑖 +

∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)

+

(−∑𝑛
𝑖=1 𝑦ℎ

′
𝑖
+∑𝑛

𝑖=1 𝑦𝑖 · 𝑦ℎ′𝑖) (
∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)√︃

(∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖) (𝑛 −∑𝑛

𝑖=1 𝑦𝑖 −
∑𝑛
𝑖=1 𝑦ℎ𝑖 +

∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)

]

(19)

𝜕𝐿𝐺

𝜕W
=

−2√︃
(∑𝑛

𝑖=1 𝑦𝑖) (𝑛 −∑𝑛
𝑖=1 𝑦𝑖)

×

[
(∑𝑛

𝑖=1 𝑦𝑖 ·
𝑑𝑦ℎ𝑖
𝑑W) (𝑛 −∑𝑛

𝑖=1 𝑦𝑖 −
∑𝑛
𝑖=1 𝑦ℎ𝑖 +

∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)√︃

(∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖) (𝑛 −∑𝑛

𝑖=1 𝑦𝑖 −
∑𝑛
𝑖=1 𝑦ℎ𝑖 +

∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)

+

(−∑𝑛
𝑖=1

𝑑𝑦ℎ𝑖
𝑑W +∑𝑛

𝑖=1 𝑦𝑖 ·
𝑑𝑦ℎ𝑖
𝑑W) (∑𝑛

𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)√︃
(∑𝑛

𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖) (𝑛 −∑𝑛
𝑖=1 𝑦𝑖 −

∑𝑛
𝑖=1 𝑦ℎ𝑖 +

∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ𝑖)

]

(20)

A.3 Balanced Accuracy
The loss function aiming at balanced accuracy, 𝐿𝐵 , is represented
as (21) with the confusion matrix (6). The first term of (8) for 𝐿𝐵 is
as (22). The partial derivative of 𝐿𝐵 is as (23).

𝐿𝐵 = 1 − 𝑛 (∑𝑛
𝑖=1 𝑦𝑖 ·𝑦ℎ𝑖)+𝑛

∑𝑛
𝑖=1 𝑦𝑖−

∑𝑛
𝑖=1 𝑦𝑖 ·

∑𝑛
𝑖=1 𝑦ℎ𝑖−(∑𝑛

𝑖=1 𝑦𝑖)2
2(∑𝑛

𝑖=1 𝑦𝑖) (𝑛−
∑𝑛

𝑖=1 𝑦𝑖)
(21)

𝜕𝐿𝐵

𝜕𝑦ℎ𝑖
=

−𝑛(∑𝑛
𝑖=1 𝑦𝑖 · 𝑦ℎ′𝑖) +

∑𝑛
𝑖=1 𝑦𝑖 ·

∑𝑛
𝑖=1 𝑦ℎ

′
𝑖

2(∑𝑛
𝑖=1 𝑦𝑖) (𝑛 −∑𝑛

𝑖=1 𝑦𝑖)
(22)

𝜕𝐿𝐵

𝜕W
=

−𝑛(∑𝑛
𝑖=1 𝑦𝑖 ·

𝑑𝑦ℎ𝑖
𝑑W) +∑𝑛

𝑖=1 𝑦𝑖 ·
∑𝑛
𝑖=1

𝑑𝑦ℎ𝑖
𝑑W

2(∑𝑛
𝑖=1 𝑦𝑖) (𝑛 −∑𝑛

𝑖=1 𝑦𝑖)
(23)

B RESULTS WITH THE DETAILS
Table 14 shows the description of 102 datasets. Table 15 and Table 16
show the winning number and probability with the 102 datasets.
Table 17 and Table 18 show the scores in the 4 datasets.

1001

https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset
https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset
https://www.kaggle.com/datasets/marcpaulo/titanic-huge-dataset-1m-passengers
https://www.kaggle.com/datasets/marcpaulo/titanic-huge-dataset-1m-passengers
https://www.kaggle.com/datasets/nelgiriyewithana/credit-card-fraud-detection-dataset-2023
https://www.kaggle.com/datasets/nelgiriyewithana/credit-card-fraud-detection-dataset-2023
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
https://doi.org/10.1016/j.patcog.2022.108913
https://doi.org/10.1016/j.patcog.2022.108913
https://openml.org/search?type=data&status=active&id=554&sort=runs
https://openml.org/search?type=data&status=active&id=554&sort=runs

AnyLoss: Transforming Classification Metrics into Loss Functions KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 14: Description of 102 Diverse Datasets. The number of samples, the number of features, and the imbalance ratios.

Data #Samp. #Feat. Imb. Data #Samp. #Feat. Imb. Data #Samp. #Feat. Imb. Data #Samp. #Feat. Imb.

1 250 12 0.64:0.36 27 504 19 0.91:0.09 53 1000 19 0.70:0.30 78 2201 2 0.68:0.32
2 250 9 0.62:0.38 28 522 20 0.80:0.20 54 1000 20 0.74:0.26 79 2310 17 0.86:0.14
3 306 3 0.74:0.26 29 531 101 0.90:0.10 55 1043 37 0.88:0.12 80 2407 299 0.82:0.18
4 310 6 0.68:0.32 30 540 20 0.91:0.09 56 1055 32 0.66:0.34 81 2417 115 0.74:0.26
5 320 6 0.67:0.33 31 559 4 0.86:0.14 57 1066 7 0.83:0.17 82 2534 71 0.94:0.06
6 327 37 0.87:0.13 32 562 21 0.84:0.16 58 1074 16 0.68:0.32 83 3103 12 0.93:0.07
7 328 32 0.69:0.31 33 569 30 0.63:0.37 59 1077 37 0.88:0.12 84 3103 12 0.92:0.08
8 335 3 0.85:0.15 34 583 10 0.71:0.29 60 1109 21 0.93:0.07 85 4052 5 0.76:0.24
9 336 14 0.76:0.24 35 593 77 0.68:0.32 61 1156 5 0.78:0.22 86 4474 11 0.75:0.25
10 349 31 0.62:0.38 36 600 61 0.83:0.17 62 1320 17 0.91:0.09 87 4521 14 0.88:0.12
11 351 33 0.64:0.36 37 609 7 0.63:0.37 63 1324 10 0.78:0.22 88 4601 7 0.61:0.39
12 358 31 0.69:0.31 38 641 19 0.68:0.32 64 1458 37 0.88:0.12 89 4859 120 0.83:0.17
13 363 8 0.77:0.23 39 645 168 0.94:0.06 65 1563 37 0.90:0.10 90 5000 40 0.66:0.34
14 365 5 0.92:0.08 40 661 37 0.92:0.08 66 1728 6 0.70:0.30 91 5000 19 0.86:0.14
15 381 38 0.85:0.15 41 683 9 0.65:0.35 67 1941 31 0.65:0.35 92 5404 5 0.71:0.29
16 392 8 0.62:0.38 42 705 37 0.91:0.09 68 2000 6 0.90:0.10 93 5473 10 0.90:0.10
17 400 5 0.78:0.22 43 748 4 0.76:0.24 69 2000 76 0.90:0.10 94 5620 48 0.90:0.10
18 403 35 0.92:0.08 44 768 8 0.65:0.35 70 2000 216 0.90:0.10 95 6598 169 0.85:0.15
19 450 3 0.88:0.12 45 797 4 0.81:0.19 71 2000 47 0.90:0.10 96 6598 168 0.85:0.15
20 458 38 0.91:0.09 46 812 6 0.77:0.23 72 2000 64 0.90:0.10 97 7032 36 0.89:0.11
21 462 9 0.65:0.35 47 841 70 0.62:0.38 73 2000 239 0.90:0.10 98 7970 39 0.93:0.07
22 470 13 0.85:0.15 48 846 18 0.74:0.26 74 2000 139 0.72:0.28 99 8192 12 0.70:0.30
23 475 3 0.87:0.13 49 958 9 0.65:0.35 75 2000 140 0.87:0.13 100 8192 19 0.70:0.30
24 475 3 0.87:0.13 50 959 40 0.64:0.36 76 2001 2 0.76:0.24 101 8192 32 0.69:0.31
25 500 25 0.61:0.39 51 973 9 0.67:0.33 77 2109 20 0.85:0.15 102 9961 14 0.84:0.16
26 500 22 0.84:0.16 52 990 13 0.91:0.09

Table 15: Results in SLP for the 102 datasets.

Winning Numbers Winning Probability

Eval. MSE BCE OURS Win/Draw/Lose (r:0.01) Win/ Draw/Lose (r:0.05)
Metrics lr:1e-2 lr:1e-1 L𝐴𝑛𝑦 (lr) OURS vs. MSE OURS vs. BCE OURS vs. MSE OURS vs. BCE

Acc 13 20 69 | L𝐴(5e-3) 0.005/0.995/0.000 0.000/1.000/0.000 0.000/1.000/0.000 0.000/1.000/0.000
F-1 2 10 90 | L𝐹1 (1e-2) 1.000/0.000/0.000 1.000/0.000/0.000 0.999/0.001/0.000 0.759/0.241/0.000

G-Mean 2 5 95 | L𝐺 (5e-3) 1.000/0.000/0.000 1.000/0.000/0.000 1.000/0.000/0.000 0.932/0.068/0.000
B-Acc 4 9 89 | L𝐵 (5e-3) 1.000/0.000/0.000 1.000/0.000/0.000 0.931/0.069/0.000 0.139/0.861/0.000
Epochs: 1,000

Table 16: Results in MLP for the 102 datasets.

Winning Numbers Winning Probability

Eval. MSE BCE OURS Win/Draw/Lose (r:0.01) Win/ Draw/Lose (r:0.05)
Metrics lr:5e-3 lr:3e-3 L𝐴𝑛𝑦 (lr) OURS vs. MSE OURS vs. BCE OURS vs. MSE OURS vs. BCE

Acc 16 20 66 | L𝐴(5e-3) 0.000/1.000/0.000 0.000/1.000/0.000 0.000/1.000/0.000 0.000/1.000/0.000
F-1 5 3 94 | L𝐹1 (1e-3) 1.000/0.000/0.000 1.000/0.000/0.000 0.844/0.156/0.000 0.501/0.499/0.000

G-Mean 4 8 90 | L𝐺 (1e-2) 1.000/0.000/0.000 1.000/0.000/0.000 0.696/0.304/0.000 0.689/0.311/0.000
B-Acc 4 4 94 | L𝐵 (5e-3) 1.000/0.000/0.000 1.000/0.000/0.000 0.181/0.819/0.000 0.095/0.905/0.000
1 Hidden Layer (2 nodes) / Activation: Sigmoid / Epochs: 100 / Batch Size: train data size × 5e-2 (5e-1 for L𝐺 & L𝐵)

1002

KDD ’24, August 25–29, 2024, Barcelona, Spain Doheon Han, Nuno Moniz, & Nitesh V. Chawla

Table 17: Results in SLP for the 4 datasets.

Data Eval. MSE BCE L𝐴 L𝐹1 L𝐹.5 L𝐹2 L𝐺 L𝐵 S𝐴 S𝐹 S𝐵

#1 Metrics lr:1e-2 lr:2e-1 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:5e-3 lr:5e-3

Acc 0.898000 0.921500 0.922000 0.913900 0.923500 0.872600 0.859400 0.853300 0.922400 0.913000 0.853300
Ran. F-1 0.075428 0.546856 0.540208 0.632383 0.572610 0.589266 0.571078 0.563108 0.533386 0.634453 0.562872
Gen. G-Mean 0.194819 0.664798 0.654791 0.814538 0.690798 0.872564 0.874335 0.874540 0.646546 0.821146 0.874122

B-Acc 0.519203 0.714945 0.708910 0.823336 0.732524 0.872757 0.874674 0.875064 0.705226 0.828751 0.874640

#2 Metrics lr:5e-3 lr:1e-2 lr:1e-3 lr:5e-3 lr:5e-3 lr:5e-4 lr:1e-3 lr:5e-3 lr:5e-3 lr:1e-3 lr:5e-3

Acc 0.989800 0.990078 0.990430 0.991572 0.991210 0.992128 0.981580 0.982196 0.990832 0.991016 0.984491
Cre. F-1 0.880601 0.884281 0.888906 0.903505 0.898935 0.913576 0.827887 0.832658 0.894053 0.896437 0.851334
Card G-Mean 0.888696 0.892165 0.896594 0.910165 0.905946 0.933853 0.956730 0.956942 0.901414 0.903675 0.956256

B-Acc 0.894874 0.897960 0.901920 0.914181 0.910349 0.935924 0.957116 0.957340 0.906273 0.908308 0.956908

#3 Metrics lr:5e-2 lr:5e-2 lr:5e-4 lr:1e-3 lr:1e-2 lr:7e-3 lr:3e-3 lr:5e-3 lr:1e-4 lr:1e-4 lr:1e-4

Acc 0.979615 0.984679 0.987244 0.984679 0.984679 0.989744 0.982179 0.982179 0.979808 0.982372 0.977244
Bre. F-1 0.863810 0.901270 0.912381 0.901270 0.892381 0.932381 0.901270 0.906032 0.908045 0.922330 0.893759
Can. G-Mean 0.875467 0.919174 0.920613 0.919174 0.902262 0.950962 0.946705 0.961198 0.964899 0.966298 0.963500

B-Acc 0.887500 0.927738 0.929167 0.927738 0.912500 0.956944 0.952738 0.963849 0.966627 0.968016 0.965238

#4 Metrics lr:5e-2 lr:1e-1 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-2 lr:1e-3

Acc 0.939810 0.959400 0.960300 0.959950 0.959350 0.924600 0.878080 0.875210 0.897990 0.942200 0.871320
Dia. F-1 0.453943 0.710881 0.708927 0.732548 0.690117 0.647293 0.555013 0.550022 0.543939 0.670434 0.541369
Pred G-Mean 0.542504 0.764060 0.752976 0.798967 0.729499 0.872160 0.885350 0.884975 0.809091 0.813986 0.879566

B-Acc 0.647168 0.790684 0.782798 0.817291 0.765898 0.874277 0.885407 0.885066 0.815235 0.826107 0.879686
Epochs: 1,000
Settings for SOL = S𝐴(cosine/mu:0.5/delta=0.1) / S𝐹 (cosine/mu:0.5/delta=0.1) / S𝐵 (cosine/mu:0.5/delta=0.1) / Epoch: 100

Table 18: Results in MLP for the 4 datasets.

Data Eval. MSE BCE L𝐴 L𝐹1 L𝐹.5 L𝐹2 L𝐺 L𝐵 S𝐴 S𝐹 S𝐵

#1 Metrics lr:1e-3 lr:5e-3 lr:4e-3 lr:1e-3 lr:5e-3 lr:5e-3 lr:5e-3 lr:5e-3 lr:1e-3 lr:1e-3 lr:2e-2

Acc 0.920300 0.923900 0.924500 0.916500 0.924900 0.877700 0.834700 0.876400 0.923100 0.914600 0.827200
Ran. F-1 0.527334 0.590095 0.578506 0.636631 0.584536 0.594422 0.540051 0.591280 0.557660 0.636488 0.531008
Gen. G-Mean 0.650637 0.712684 0.694489 0.811241 0.703328 0.867475 0.866778 0.859828 0.672888 0.818277 0.856774

B-Acc 0.711984 0.747529 0.735166 0.820982 0.742470 0.868011 0.868504 0.861911 0.720869 0.826697 0.857939

#2 Metrics lr:5e-4 lr:5e-3 lr:3e-3 lr:3e-3 lr:3e-3 lr:3e-3 lr:3e-3 lr:5e-3 lr:5e-3 lr:1e-2 lr:5e-3

Acc 0.990567 0.993532 0.993997 0.995066 0.992155 0.994369 0.977419 0.990741 0.992095 0.994868 0.981027
Cre. F-1 0.888571 0.928710 0.933364 0.946277 0.910775 0.940188 0.804384 0.904573 0.910032 0.944155 0.821155
Card G-Mean 0.897839 0.940434 0.941921 0.955223 0.916897 0.962974 0.960083 0.956059 0.916242 0.954546 0.948832

B-Acc 0.904099 0.942173 0.943752 0.956211 0.920334 0.963597 0.960347 0.956882 0.919734 0.955573 0.949542

#3 Metrics lr:1e-3 lr:5e-3 lr:5e-3 lr:1e-2 lr:1e-2 lr:3e-3 lr:1e-2 lr:5e-3 lr:1e-3 lr:1e-2 lr:5e-3

Acc 0.982244 0.994872 0.994936 1.000000 0.994936 1.000000 0.994872 0.969872 0.984679 0.992372 0.982179
Bre. F-1 0.882857 0.965714 0.974603 1.000000 0.965714 1.000000 0.968889 0.910551 0.890317 0.954603 0.906984
Can. G-Mean 0.891359 0.968252 0.985164 1.000000 0.968252 1.000000 0.980211 0.982366 0.911151 0.966813 0.973177

B-Acc 0.900000 0.970833 0.986071 1.000000 0.970833 1.000000 0.981905 0.983294 0.923571 0.969405 0.974921

#4 Metrics lr:1e-3 lr:5e-3 lr:5e-3 lr:3e-3 lr:5e-3 lr:3e-3 lr:1e-2 lr:7e-2 lr:1e-2 lr:2e-2 lr:3e-2

Acc 0.955990 0.960370 0.961340 0.960310 0.960760 0.938710 0.862870 0.926500 0.961200 0.960130 0.862430
Dia. F-1 0.654638 0.716911 0.724130 0.736366 0.703492 0.691992 0.536563 0.662707 0.724056 0.735649 0.519180
Pred G-Mean 0.714728 0.766348 0.770847 0.803085 0.739861 0.877184 0.887109 0.874578 0.771942 0.803348 0.864478

B-Acc 0.765876 0.792601 0.796173 0.820582 0.773552 0.880067 0.888034 0.877450 0.796950 0.820751 0.865170
1 Hidden Layer (2 nodes) / Activation: Sigmoid / Epochs: 100 / Batch Size: train data size × 5e-2 (5e-1 for L𝐺 & L𝐵)
Settings for SOL = S𝐴(cosine/mu:0.5/delta=0.1) / S𝐹 (cosine/mu:0.5/delta=0.1) / S𝐵 (cosine/mu:0.5/delta=0.1)

1003

	Abstract
	1 Introduction
	2 Related Works
	2.1 Specific Metric
	2.2 General Metrics

	3 Method
	3.1 Approximation
	3.2 AnyLoss

	4 Experiments
	4.1 Performance on 102 Diverse Datasets
	4.2 Performance on 4 Imbalanced Datasets
	4.3 Learning Time

	5 Additional Experimental Results
	5.1 Advanced Architecture
	5.2 Large Dataset
	5.3 Determination of L

	6 Conclusion
	References
	A Calculation of Partial Derivatives
	A.1 F-beta scores
	A.2 Geometric Mean
	A.3 Balanced Accuracy

	B Results with the Details

