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Abstract
Chemical reaction data has existed and still largely exists in unstruc-
tured forms. But curating such information into datasets suitable for
tasks such as yield and reaction outcome prediction is impractical
via manual curation and not possible to automate through program-
matic means alone. Large language models (LLMs) have emerged
as potent tools, showcasing remarkable capabilities in processing
textual information and therefore could be extremely useful in au-
tomating this process. To address the challenge of unstructured
data, we manually curated a dataset of structured chemical reaction
data to fine-tune and evaluate LLMs. We propose a paradigm that
leverages prompt-tuning, fine-tuning techniques, and a verifier to
check the extracted information. We evaluate the capabilities of
various LLMs, including LLAMA-2 and GPT models with different
parameter counts, on the data extraction task. Our results show that
prompt tuning of GPT-4 yields the best accuracy and evaluation
results. Fine-tuning LLAMA-2 models with hundreds of samples
does enable them and organize scientific material according to user-
defined schemas better though. This workflow shows an adaptable
approach for chemical reaction data extraction but also highlights
the challenges associated with nuance in chemical information. We
open-sourced our code at GitHub.

CCS Concepts
• Information systems → Language models; • Computing
methodologies → Information extraction; • Applied comput-
ing → Chemistry.
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1 Introduction
The combination of data-driven methods and chemistry [2–4, 7,
8, 12, 19] has achieved outstanding progress in recent years. The
explosion in the use of machine learning (ML) techniques has in-
creased the demand for large, well-organized datasets[15]. However,
in the domain of chemistry, the challenge for a lot of predictive
model design has been around the lack of structured data itself.
“Data points” in chemistry are often scattered in literature within
tables, figures, and free text and generally have a lot of contextual
information to be inferred. Therefore, traditional data extraction
methods lead to several complications and mistakes. This is also
reflected in the United States Patent and Trademark Office (USPTO)
dataset [14], extracted from granted and applied patents from 1976-
2016. The dataset has about three million reactions, represented in
the Simplified Molecular Input Line Entry Specification (SMILES)
format, with mined freetext and some abstractions from it. Such
data presents a lot of opportunities for thorough analysis as well as
predictive modeling if structured properly. For example, in several
instances, the freetext contains characterization information (ob-
tained through methods like Nuclear Magnetic Resonance [NMR],
mass spectrometry) and experimental method information (syn-
thesis conditions, chemical process results), which could be crucial
for representing reactions and understanding outcomes related to
them.
Large Language Models (LLMs), such as the generative pretrained
transformer (GPT)-4, have recently sparked a lot of scientific and
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general interest, indicating that they have significant potential to
solve this challenge. While traditional manual extraction and cura-
tion of unstructured text into structured datasets could take months,
LLMs are a strong alternative that might effectively speed this pro-
cess up.
In this study, we will probe the applicability of LLMs in extract-
ing useful information from such unstructured/unorganized data
sources in chemistry, with the goal of obtaining organized informa-
tion hierarchies for downstream modeling. The contribution of the
paper can be summarized as follows:
• We propose a workflow that combines prompt-tuning and fine-
tuning techniques for LLMs in chemical reaction information
extraction and a fact-based verifier to evaluate the information
within the extraction.

• We manually curate a dataset from over 800 classes representing
the majority of examples in the USPTO database and extracted
accurate, structured chemical reaction information in JavaScript
Object Notation (JSON) format.

• We design prompts for extracting structured information out of
this dataset, and compare the same with using part of the dataset
for finetuning.

• We evaluate the performance of these LLMs in reaction infor-
mation extraction tasks with natural language processing (NLP)
metrics and fact-based verifier metrics.

2 Related work
In recent years, ML models explicitly designed for direct property
prediction have been increasingly integrated into the early stages
of drug discovery and design workflows [1, 16, 21]. The efficacy of
these models, however, depends on the availability of large training
datasets from organized databases. For example, in experimental or-
ganic synthesis, the traditional methods are typically non-uniform
and highly context-dependent, which will lead to a loss of informa-
tion when translated into a structured, tabular format [10].
LLMs, which employ semantic links across varied lengths of natu-
ral language sequences [11], show great potential for overcoming
these constraints. The emergent capability of artificial “general in-
telligence” was initially demonstrated with OpenAI’s GPT-3.5 and
GPT-4 [6], and this led to a large number of proprietary as well as
open source efforts to train powerful LLMs. Parallelly, there has also
been a lot of work on trying to most effectively use LLM inferences
through prompt tuning. More recently, prompts and architectures
based on the utilization of LLMs as agents with tools have led to
the creation of further possibilities for LLM usage without explicit
retraining or fine-tuning. But as LLM fine-tuning methods become
more optimal and available, adapting them to different domains
and workflows is even more facilitated, giving rise to a multitude
of LLM-based strategies for various tasks.
To extract information from scientific journals, Zheng et al. [23]
developed a prompt-engineering method known as ChemPrompt
w/ ChatGPT. They primarily focus on structuring text into tables,
generating semi-structured summaries, and compiling information
from the pretraining corpus. Huang and Cole [9] fine-tuned a BERT
model by training it on battery publications to improve a database
of NLP-extracted battery data. Despite breakthroughs in data trans-
formation, it is still challenging to consistently turn unstructured
data into structured representations. Dunn et al. [5] and Walker
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Figure 1: Our workflow for chemical reaction data extraction
and cleaning. They are separated into four stages: prompt-
tuning, manual inspection, fine-tuning, and verification
et al. [22] have proven the use of GPT-based models, which are
iteratively fine-tuned to effectively organize data from scholarly
papers into JSON format. However, such workflows have not been
implemented for organic reactions, which involve several compo-
nents like reactant(s), product(s), conditions and procedures. With
the USPTO database as a proof of concept, we aim to evaluate the
efficacy of LLMs for such a task..

3 Methodology
3.1 Workflow of the Extraction
As shown in Figure 1, we separate our workflow into four distinct
stages: prompt-tuning, manual inspection, fine-tuning, and verifica-
tion. In the initial prompt-tuning stage, we leverage expert-curated
prompts tailored for GPT models to distill essential information
from unstructured text. This step significantly streamlines subse-
quentmanual inspection, asmany tasks, such as extracting chemical
formulas and reactant names, can be efficiently handled by state-
of-the-art LLMs. The subsequent stage involves the JSON output
generated by the prompt-tuned LLMs being manally scrutinized,
particularly focusing on detecting instances of hallucination or mis-
interpretation, especially within experimental procedures. Next, the
human-inspected JSON data is employed to fine-tune open-sourced
LLMs. Following fine-tuning, the refined model can continuously
process new unstructured data and proceed to the information
verification stage.
3.2 Dataset Curation
Firstly, we used the USPTO database for the curation of the reac-
tion extraction dataset. We used the RXNFP [20] that classified
the reactions in USPTO into 834 classes. As a proof of concept, we
sample one example from each of 834 classes for maximal coverage.
The procedure part of each example, after combination with our
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deliberately designed prompt was prompted to GPT-4 ( 1 , Figure
1). We specify the reaction labels to be JSON files. The JSON for-
mat includes sections for reactants, spectators (solvents), products,
yield, procedures, total reaction time, and product information. The
reactants, spectators, and products sections contain information
about the chemicals involved in the reaction, including their names,
amounts, moles, and SMILES notation. The yield section indicates
the reaction yield. The procedures section includes details about
the procedure type, chemicals involved, description, temperature,
and time. The total_time field indicates the total time for the re-
action. The product information section specifies qualitative or
quantitative data about the products, such as color, physical state,
or analytical details from spectroscopic methods like NMR or LCMS.
"N/A" was used to handle any missing information Following this,
we manually inspected these 834 data points, including the reactant,
product, their amount, reaction procedures and reaction labels ( 2 ,
Figure 1).
3.3 Prompt Design
Prompt design is requirement dependent and subjective. Based on
our setting, we performed three different levels of prompt design,
where almost no prompt, a slightly designed prompt, or a fully de-
signed prompt is given to the LLM. The ’almost no prompt’ refers to
the prompt design that only instructs the LLM to format the unstruc-
tured data into the JSON format without specifying what exactly the
JSON will look like. The slightly designed prompt is generated with
the help of GPT, with a poorly structured and unexplained JSON
format provided. Lastly, an expert-curated prompt is generated with
the inspection of the result from a slightly designed prompt and
chemist expertise. The design is based on the insight from both
iterative LLM prompting experiments and chemists experienced
with chemical names and lab procedures. The prompt does include
the full JSON schema mentioned in the previous section with an
explanation, but also provides guidelines for handling missing in-
formation and information mismatches between the structured and
unstructured parts. The model is instructed to interpolate between
different parts of the given data and use reasoning about chemi-
cals without adding any extra information to the formatted JSON.
If information is missing, "N/A" should be used as a placeholder.
Finally, the model is instructed to output only the formatted JSON
and nothing else.
3.4 Fine-tuning
For finetuning ( 3 , Figure 1), we split the curated dataset with a
ratio of 8:2 for training and testing purposes and use Low-rank
adaptation (LoRA) for efficient parameter fine-tuning. We chose
7b, 13b Llama-2, and GPT-3.5-turbo models for fine-tuning. We
finetuned the 7b and 13b Llama-2 models on 2 A100 GPUs for 200
epochs within 12 hours, and the GPT-3.5-turbo by calling the Ope-
nAI API. The JSON outputs are treated as labels for the finetuning
process.
3.5 Verification
In addition to the extraction workflow, we add a fact-based verifier
to double check the extracted information. Such an approach serves
a dual purpose: a chemistry-oriented sanity check to the workflow
and a quantitative estimation of the data quality itself. The verifica-
tion stage ( 4 , Figure 1) consisted of three checks: SMILES validity,

number of moles and yield verification. based on RDKit (an open-
source cheminformatics toolkit)-based tools, the inputs of which
were planned by a GPT model when prompted with the extracted
data. The workflow is structured as follows. The output extracted
from the LLM is structured into inputs of SMILES, weights, and
number of moles. The toolkit first checks if the SMILES for each
reactant and product are valid. If they are, the SMILES strings are
used to calculate molecular weights through RDKit, which allows
for a quantitative check over the number of moles. If these cal-
culated values deviate more than 20 percent from the reported
values, the molecule is flagged. The mole values are also used to
compute a yield estimation metric to flag out unrealistically high
reaction yields which have either been misreported or wrongly ex-
tracted. This simply done by comparing the product moles against
the limiting reagent. The metrics used for verification are further
highlighted in Section 4.1

4 Experiment
Our workflow integrates both LLMs and the verifier. Therefore,
we measure the capability of the LLMs under different settings
and LLMs with the verifier to demonstrate the effectiveness of our
workflow in reaction information extraction.
4.1 Evaluation Metrics
Traditional evaluation metrics in the NLP area are employed in our
study. However, they are not sufficient to evaluate the quality of the
extraction in our case. Therefore, we employ the fact-based verifier
metrics to better evaluate the quality of the extractions.
1. SacreBLEU: We use SacreBLEU [18] as a reference-based evalu-
ation metric for machine translation. SacreBLEU computes a score
based on the n-gram overlap between the machine-generated trans-
lations and one or more reference translations. The higher the
SacreBLEU score, the better the translation quality, indicating a
higher similarity between the machine-generated text and the ref-
erence reaction information.
2. BLEU-1: We utilize the BLEU-1 [17], which considers only un-
igrams (individual words) for evaluation. BLEU-1 is particularly
useful because it provides a simple and automated way to measure
the quality of special words such as compounds and operations
in the reaction data. Even though it cannot capture higher-level
linguistic phenomena, it is still valuable in providing a quick and
informative evaluation of reaction information.
3. ROUGE: We employ ROUGE [13] as an evaluation metric that is
commonly used in NLP. ROUGE evaluates the overlapping between
the generated text and the reference text. In essence, ROUGE scores
help assess how well a machine-generated summary or translation
captures the important phrases or concepts present in the reference
text, which is reaction information in our case.
4. Fact-based verifier Metrics: We choose the proportion of valid
SMILES, correctly verified mole values, and correctness of average
yield estimation as three evaluation metrics in the verifier. These
metrics evaluate the factual correspondence of the information
within JSON files. Metric A refers to the proportion of SMILES
strings in the extraction that are valid and can be parsed through
RDKit. Metric B is the proportion of correctly reported molar val-
ues. Values of calculated number of moles deviating more than 20%
from their reported counterparts, as well as values with unreported
components (SMILES, weight or number of moles), are flagged
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Tuning Type Model&Prompt type Metrics
SacreBLEU BLEU-1 ROUGE-1 ROUGE-2 ROUGE-L

Prompt-tune

LLAMA2-7b No-prompt 14.86 0.07 0.10 0.07 0.09
LLAMA2-13b No-prompt 13.88 0.03 0.50 0.37 0.40
LLAMA2-70b No-prompt 10.38 0.03 0.35 0.23 0.26
LLAMA2-13b Moderate 24.50 0.03 0.53 0.33 0.43
LLAMA2-70b Moderate 17.20 0.03 0.48 0.29 0.41
LLAMA2-13b Expert 47.41 0.03 0.63 0.43 0.55
LLAMA2-70b Expert 50.00 0.03 0.66 0.48 0.59
GPT3.5-turbo Expert 75.22 0.16 0.83 0.73 0.74

GPT4.0 Expert 98.62 0.45 0.98 0.98 0.98

Fine-tune
GPT3.5-turbo 84.14 0.20 0.89 0.83 0.85
LLAMA2-7b 41.36 0.05 0.62 0.58 0.58
LLAMA2-13b 77.50 0.04 0.83 0.75 0.77

Table 1: Comparison of models with different parameters and tuning methods under BLEU and ROUGE metrics. Bold and
underline are the best and the second best result, respectively, across each metric

Tuning Type Model&Prompt type Metrics
A B C

Prompt-tune GPT4.0 Expert 0.98 0.59 0.56

Fine-tune
GPT3.5-turbo 0.98 0.26 0.22
LLAMA2-7b 0.96 0.62 0.60
LLAMA2-13b 0.97 0.56 0.52

Table 2: Verification scores of different model types. Metric A:
Proportion of valid SMILES; Metric B: Proportion of correctly
verified mole values; Metric C: Average yield estimation cor-
rectness
with a score of 0, and this is averaged across all molecules. The
mole values can also be used to compute a yield estimation metric
to flag out unrealistically high reaction yields which have either
been misreported or wrongly extracted. This is done by comparing
the product moles to the limiting reagent, and is simply expressed
as a 0/1 output per reaction. This averaged across the test set is
mentioned as Metric C.
4.2 Evaluation of LLMs
The models listed include different versions of GPT (3.5 and 4.0)
as well as LLAMA2 with varying parameters. Performance varies
across models and metrics, indicating that different configurations
and tuning methods have significant impacts on model perfor-
mance. Based on our experiments in Table 1, prompt-tuning GPT-4
is the state-of-the-art model. In the fine-tuning models, GPT-3.5
shows promising performance across all metrics among all of the
fine-tuning models. LLAMA2 models have relatively lower scores
compared to GPT models, but they also show improvements after
fine-tuning and prompt-tuning. Fine-tuning with only hundreds of
datapoints could improve the performance of the model by at least
200% and yield well-structured text. More parameters do not guaran-
tee better performance. Generally, fine-tuning and prompt-tuning
improve model performance across all models and metrics. While
GPT3.5-turbo and GPT-4 perform well overall, it’s essential to con-
sider the cost for the vast amount of literature text in the chemistry
domain. Therefore, we leverage GPT models with prompt-tuning to
generate a small amount of initial JSON for manual inspection, then
proceed to fine-tune locally deployed Llama-2 models for future
extensive corpus of chemistry literature extraction. Certainly, local
computational resources and task requirements also require careful
consideration.

4.3 Evaluation of LLMs with Verifier
Values computed in the verification stage are reported in Table 2,
averaged across all test samples. While the SMILES scores (Metric
A) are clear indicators of data quality, low scores with correctly
verified mole values (Metric B) could be both due to a higher propor-
tion of incomplete information or hallucinated/missing information
in the extraction. The yield estimations (Metric C) are conditional
on the availability of all the information in the first two metrics,
justifying their lower scores. GPT-4 seems to provide the best per-
formance, but the finetuned LLAMA variants also largely pick the
correct information from the text without hallucinating. Using such
a verifier in tandem with an extraction workflow could be vital for
creating datasets reliably while ensuring quality and correctness.
Using a fact-based metric could have the disadvantage of not clearly
delineating between the quality of the data and the quality of the ex-
traction though. As mentioned, a low score on these metrics could
be due to data quality issues or incorrect extractions. Therefore,
more detailed metrics need to be ideated to gauge model perfor-
mance better with respect to this task.
5 Conclusion
Our study explores the use of LLMs for extracting chemical reaction
data from unstructured texts using the USPTO reaction dataset. We
prompt and fine-tune models (GPT-3.5-turbo, GPT-4.0, and Llama 2)
to refine data, assessing performance with metrics like SacreBLEU,
BLEU, and ROUGE. Extracted text items are verified for accuracy.
Our results indicate that LLMs, when fine-tuned with sufficient sam-
ples, can effectively organize scientific content into user-defined
schemas. The workflow’s simplicity and accessibility enable the
conversion of unstructured scientific texts into structured databases,
balancing commercial LLM performance with accuracy. However,
data extraction in specialized domains like chemical reactions re-
mains complex, requiring further studies on evaluation methods
and data quality.
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