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ABSTRACT
The yield of a chemical reaction quantifies the percentage of the

target product formed in relation to the reactants consumed during

the chemical reaction. Accurate yield prediction can guide chemists

toward selecting high-yield reactions during synthesis planning,

offering valuable insights before dedicating time and resources to

wet lab experiments. While recent advancements in yield predic-

tion have led to overall performance improvement across the entire

yield range, an open challenge remains in enhancing predictions

for high-yield reactions, which are of greater concern to chemists.

In this paper, we argue that the performance gap in high-yield pre-
dictions results from the imbalanced distribution of real-world data
skewed towards low-yield reactions, often due to unreacted starting
materials and inherent ambiguities in the reaction processes. Despite
this data imbalance, existing yield prediction methods continue to

treat different yield ranges equally, assuming a balanced training

distribution. Through extensive experiments on three real-world

yield prediction datasets, we emphasize the urgent need to reframe

reaction yield prediction as an imbalanced regression problem. Fi-

nally, we demonstrate that incorporating simple cost-sensitive re-

weighting methods can significantly enhance the performance of

yield prediction models on underrepresented high-yield regions.

CCS CONCEPTS
• Applied computing → Chemistry; • Computing methodolo-
gies → Machine learning.
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1 INTRODUCTION
Recent advancements in machine learning have introduced a para-

digm shift in the field of computational chemistry [5]. These break-

throughs have led to a diverse array of machine learning models

that now play critical roles in assisting chemists across a broad spec-

trum of tasks, including but not limited to retrosynthesis, product

prediction, and drug discovery. Among this multifaceted landscape,

the prediction of reaction yields [1, 12, 13, 15, 17] emerges as an

issue of paramount importance in the domain of synthesis planning,

where complex molecules are synthesized through a sequence of

reaction steps. Based on the empirical categorization, yields above

67% are classified as high yields and those below 33% are classified

as low yields [17]. In this context, the occurrence of a low-yield

reaction within this sequence can drastically impact the feasibility

and overall efficiency of the synthesis process. As a result, chemists

often prioritize the accurate prediction of high-yield reactions.

While the introduction of numerous yield prediction models

has indeed showcased improved performance across the entire

yield range, the challenge of effectively enhancing performance for

high-yield reactions remains an open problem [9]. In real-world

scenarios, yield data often exhibits a highly imbalanced distribution,

with high yield values being much rarer than lower ones, despite

their greater importance to chemists in synthesis planning. In this

paper, we argue that the increased difficulty in predicting high-yield
reactions stems from its limited availability of data samples, often due
to unreacted starting materials and inherent ambiguities in the reac-
tion processes. Despite the presence of such data imbalance, existing

yield prediction methods continue to treat different yield ranges

equally with the false assumption of a balanced data distribution.

To gain a deeper insight into the field’s actual progress, we

conduct extensive experiments to benchmark six state-of-the-art

yield prediction methods on three real-world datasets. Surprisingly,

the results become less impressive than claimed when we take

data imbalance into account. We discover that the overall good
performance across the entire yield spectrum primarily results from
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enhancing performance in areas with sufficient data, typically the
low-yield range, while overlooking the significant performance gap in
underrepresented high-yield regions. This finding has motivated us to

revisit reaction yield prediction and reformulate it as an imbalanced

regression problem, a well-established topic in machine learning.

Unlike imbalanced classification, reaction yield prediction in-

volves regression rather than classification, and there has been

limited exploration of addressing data imbalance in the regression

context [11]. Most prior research on imbalanced regression has

directly adapted the SMOTE algorithm [3] to regression settings

[2, 14]. However, the continuous nature of target labels in regres-

sion tasks makes these adaptations less practical. A more intuitive

solution is to apply cost-sensitive re-weighting strategies [4, 7, 16]

that can be seamlessly combined with various regression models.

We demonstrate that incorporating these simple methods can sig-

nificantly enhance the performance of existing yield prediction

models on underrepresented high-yield regions without sacrificing

the overall performance too much. We believe these findings have

the potential to redirect the future research direction in reaction

yield prediction, benefiting both chemistry and machine learning

communities. In summary, the contributions of this paper include:

• We are the first to introduce the novel concept of reformulating

reaction yield prediction as an imbalanced regression problem.

• We conduct comprehensive experiments on three real-world yield

prediction datasets to uncover and understand the limitations of

existing models when predicting high-yield reactions.

• We demonstrate that incorporating cost-sensitive re-weighting

methods into existing yield prediction models can lead to signifi-

cant performance improvements on high-yield reactions.

2 THE EXAMINATION OF EXISTING YIELD
PREDICTION METHODS

In this section, we begin by introducing the definitions of reaction

yield prediction and imbalanced regression. We then proceed to

evaluate six yield prediction methods on three real-world datasets.

2.1 Preliminaries
Definition 1: Reaction yield prediction. Reaction yield predic-

tion is a regression problem that predicts the yield value𝑦 ∈ [0, 100]
of a chemical reaction 𝑟𝑥𝑛 = (R, 𝑃) composed of multiple reactant

molecules R and a single product molecule 𝑃 .

Definition 2: Imbalanced regression. Let D = {(𝒙𝑖 , 𝑦𝑖 )}𝑁𝑖=1
denote the training dataset of a regression problem, where 𝒙𝑖 ∈
R𝑑 is the input feature vector and 𝑦𝑖 ∈ R is the label. We divide

the label space Y into 𝐾 disjoint bins with equal intervals, i.e.,

[𝑏0, 𝑏1), [𝑏1, 𝑏2), . . . , [𝑏𝐾−1, 𝑏𝐾 ). Let C𝑘 be the set of data samples

in the 𝑘-th bin with 𝑘 ∈ {1, 2, . . . , 𝐵}. The data imbalance occurs

when the label distribution is highly skewed, i.e.,
max𝑘 | C𝑘 |
min𝑘 | C𝑘 | ≫ 1.

2.2 Evaluation Settings for Yield Prediction
2.2.1 Datasets. We use three real-world datasets for predicting

reaction yields, sourced from either high-throughput experimen-

tation (HTE) or electronic laboratory notebooks (ELN). Following

prior research on imbalanced regression [4, 8, 16], we categorize

the bins within the target yield space into three disjoint subsets:

many-shot (bins with over #upper reactions),medium-shot (bins with
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Figure 1: A comparison between yield distributions (left) and
test error distributions (right) on three real-world datasets.

#
lower

to #upper reactions), and few-shot (bins with fewer than #lower
reactions) regions, based on their respective numbers of training

samples. For all three datasets, we set the bin size |𝑏𝑘 − 𝑏𝑘−1 | to 1.

The left section of Figure 1 visualizes the division of these regions.

• B-H [1]: It comprises 3,955 Buchward-Hartwig reactions from

HTE, with the number of reactions per bin varying between 1

and 412. Here, #
lower

is set to 25, and #upper is set to 50.

• S-M [10]: It consists of 5,760 Suzuki-Miyaura reactions from HTE,

with the number of reactions per bin ranging from 1 to 209. Here,

#
lower

is set to 20, and #upper is set to 65.

• AZ [12]: It includes 750 Buchward-Hartwig reactions from ELN

at AstraZeneca, with the number of reactions per bin ranging

from 0 to 145. Here, #
lower

is set to 3, and #upper is set to 5.

2.2.2 Yield prediction methods.

• Machine learning methods: Random Forest (RF), XGBoost,

Support Vector Machines (SVM);

• Deep learning methods:Multi-layer Perceptron (MLP), Yield-

GNN [12], Yield-BERT [13].

2.2.3 Evaluation pipeline. We report yield prediction results on

many-shot, medium-shot, and few-shot regions as well as on the

entire yield space (i.e., the all region). In all three datasets, 70% of

the data is used for training and the remaining 30% is reserved for

testing. Our evaluation employs common yield prediction metrics:

mean absolute error (MAE) and root mean square error (RMSE).

Additionally, we also utilize the geometric mean of 𝐿1 errors (G-

Mean) as a supplementary metric. Lower values (↓) of MAE, RMSE,

and G-Mean indicate better yield prediction performance.

2.2.4 Implementation details. For RF, XGBoost, SVM, and MLP, the

input features include structural fingerprints (e.g., ECFP), chemical

properties (e.g., NMR shifts, HOMO/LUMO energies, vibrations,

dipole moments), and reaction-specific parameters (e.g., scale, vol-

ume, temperature). For Yield-BERT, the SMILES string of the re-

action is used as input; an encoder based on a pre-trained BERT

[6] for SMILES is employed, with a k-Nearest Neighbors (kNN) re-

gressor serving as the decoder. For YieldGNN, we construct graph

structures to represent the molecules involved in the reaction; a
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Dataset Method
MAE ↓ RMSE ↓ G-Mean ↓

All Many Med. Few All Many Med. Few All Many Med. Few

B-H

RF 5.5±0.2 4.4±0.2 6.0±0.2 6.7±0.6 8.1±0.3 7.4±0.3 8.4±0.4 9.1±0.8 2.8±0.1 1.8±0.1 3.6±0.2 4.1±0.4
XGBoost 4.7±0.2 3.8±0.2 5.2±0.2 5.7±0.5 6.9±0.3 6.1±0.4 7.1±0.5 7.8±0.7 2.7±0.1 2.0±0.1 3.2±0.1 3.4±0.3
SVM 14.6±0.3 12.9±0.5 12.9±0.7 26.1±1.1 18.5±0.4 15.8±0.5 17.2±0.8 28.6±0.9 9.2±0.3 8.7±0.5 7.7±0.6 22.2±1.6
MLP 4.5±0.2 3.4±0.3 5.3±0.2 5.3±0.4 7.0±0.5 6.0±1.0 7.6±0.6 7.3±0.6 2.5±0.1 1.8±0.1 3.1±0.1 3.3±0.3

YieldGNN 8.7±7.9 8.6±9.5 7.6±4.6 12.8±14.5 11.1±8.7 10.6±9.1 10.1±5.9 14.7±14.7 3.0±0.4 2.3±0.5 3.5±0.4 3.9±0.5
Yield-BERT 5.5±0.3 3.8±0.3 6.6±0.4 6.6±0.5 8.4±0.4 7.1 ±1.4 9.1±0.6 8.9±0.8 3.2±0.1 2.2±0.1 4.1±0.4 4.1±0.5

Avg. Ranking - 1.2 1.8 3.0 - 1.2 2.2 2.7 - 1.2 1.8 3.0

S-M

RF 8.0±0.2 6.1±0.4 8.8±0.3 12.8±6.1 11.8±0.4 11.2±0.9 12.0±0.3 15.9±7.6 4.0±0.2 2.3±0.1 5.1±0.3 9.8±3.8
XGBoost 7.2±0.2 6.1±0.4 7.7±0.2 6.8±4.7 10.5±0.2 10.1±0.8 10.7±0.2 9.7±6.3 4.1±0.1 3.1±0.2 4.6±0.1 3.9±2.7
SVM 16.5±0.2 14.8±0.5 17.1±0.2 31.6±6.0 20.3±0.2 18.7±0.6 20.8±0.3 33.0±6.1 11.1±0.2 9.6±0.3 11.7±0.3 30.3±6.0
MLP 7.5±0.3 6.1±0.5 8.1±0.4 8.5±6.8 11.1±0.4 10.7±0.9 11.2±0.5 12.3±9.3 4.1±0.2 2.9±0.2 4.8±0.3 4.5±3.5

YieldGNN 9.1±1.2 7.2±0.9 9.9±1.9 10.8±7.3 12.6±1.5 10.8±1.4 13.2±2.2 13.5±8.2 5.4±0.6 4.1±0.5 6.1±1.2 8.0±6.9
Yield-BERT 9.1±0.4 6.3±0.4 10.2±0.5 5.1±5.4 13.3±0.6 11.2±0.9 14.1±6.3 7.7±7.6 5.0±0.2 3.3±0.2 6.0±0.3 2.3±2.7

Avg. Ranking - 1.2 2.3 2.5 - 1.3 2.3 2.3 - 1.2 2.5 2.3

AZ

RF 20.3±0.8 19.1±0.7 23.6±2.5 32.0±4.3 25.2±0.9 23.6±0.8 29.8±3.0 36.4±3.9 13.8±0.8 13.1±0.6 16.0±3.0 26.0±6.4
XGBoost 20.6±1.0 19.5±1.0 23.9±3.4 30.4±6.1 27.2±1.3 25.6±1.3 31.9±3.6 37.9±6.0 11.8±1.0 11.3±1.1 14.0±3.6 19.7±6.5
SVM 25.0±0.8 23.5±0.7 28.0±2.4 41.7±3.9 28.9±0.9 27.1±0.7 32.5±2.4 43.9±3.8 18.6±0.9 17.5±0.7 20.8±2.9 37.6±5.8
MLP 22.1±1.7 21.5±1.3 25.0±5.0 26.0±6.9 29.7±2.1 28.9±1.9 33.4±4.9 32.8±7.4 12.0±1.2 11.6±0.9 14.6±5.0 15.6±6.7

YieldGNN 22.5±0.8 21.5±0.6 25.5±3.3 33.4±6.7 28.0±1.0 26.5±1.0 32.0±3.7 38.6±6.0 15.2±1.1 14.6±0.9 17.0±3.1 25.7±9.2
Yield-BERT 25.6±2.5 24.3±2.6 28.7±3.8 38.4±10.1 32.5±3.0 30.7±3.0 37.5±3.6 45.2±9.9 15.7±1.5 15.1±1.7 18.0±4.7 26.2±10.8

Avg. Ranking - 1.0 2.0 3.0 - 1.0 2.2 2.8 - 1.0 2.0 3.0

Table 1: Reaction yield prediction results on three real-world datasets. We report the average performance across 10 repetitions
in all experiments and present the average rankings for the many-shot, medium-shot, and few-shot regions, respectively.

GNN is used to encode the reaction, while an MLP is used to decode

the reaction embedding into yield predictions. We employ the 𝐿1
distance as the training loss L in all experiments.

2.3 Uncovering and Understanding the
Performance Gap in High-Yield Predictions

Figure 1 provides an insightful comparison between yield distribu-

tions and test error distributions, both as functions of yield values.

Regarding the yield distribution, we note that the few-shot region
predominantly comprises high-yield reactions, while themany-shot
region primarily consists of low-yield reactions. Specifically in the

B-H and S-M datasets, 81% and 100% of the few-shot reactions fall
into the high-yield category, while 89% and 100% of the many-shot
reactions belong to the low-yield category. This finding establishes

a clear connection between yield values and their distributions.

To quantify the impact of data imbalance on prediction errors, we

compute the Pearson correlation coefficients between the testing

error distribution and the training yield distribution. Across all

three reaction yield prediction datasets, we consistently observe

negative correlation coefficients, with values of -0.42, -0.28, and -

0.07, respectively. Moreover, in the right part of Figure 1, it is evident

that the few-shot region (in orange) exhibits the largest test error,

while the many-shot region (in blue) demonstrates the smallest

error. To complement this observation, we further evaluate the

yield prediction performance of six state-of-the-art models using

three metrics and report the average performance rankings for the

three regions in Table 1. As a result, the average ranking indicates a

decline in model performance as we transition from the many-shot
region to the medium-shot and few-shot regions.

Therefore, both observations from Figure 1 and Table 1 converge

to the same conclusion: During the training process, low-yield

values with a larger number of data samples tend to be learned

better in comparison to those high yields with fewer samples. This

highlights the demand for specialized machine learning techniques

that can effectively address the challenge of data imbalance.

3 MITIGATING DATA IMBALANCE FOR
BETTER HIGH-YIELD PREDICTIONS

In this section, we present two cost-sensitive re-weighting methods

for imbalanced regression, which can be seamlessly integrated into

the learning process of existing yield prediction models. We also

provide evidence of their effectiveness in high-yield predictions.

3.1 Cost-sensitive Re-weighting Methods
The key idea is to assign a weight𝑤𝑖 ∈ W to each training sample

(𝒙𝑖 , 𝑦𝑖 ), resulting in the following modified loss function L′
:

L′ =
1

𝑁

𝑁∑︁
𝑖=1

𝑤𝑖L(𝑦𝑖 , 𝑦𝑖 ), (1)

where L is a loss function for regression tasks, such as 𝐿1 loss,

MSE loss, and Huber loss. The distinctiveness of each re-weighting

method arises from the various designs of training weights W.

3.1.1 Focal loss. The Focal loss [7] is a specialized loss function de-

signed to address imbalanced learning problems. It assigns varying

weights to individual training samples based on their prediction

difficulties. The goal is to reduce the impact of easily predictable

samples while amplifying the importance of challenging samples

during the training process. The weight𝑤𝑖 is defined as:

𝑤𝑖 = sigmoid(𝛼L(𝑦𝑖 , 𝑦𝑖 ))𝛾 (2)

where sigmoid(·) is the sigmoid function, and 𝛼 , 𝛾 are hyper-

parameters. This results in the scaling factor of each training sample

ranging from 0 to 1, depending on the prediction error. Notably,

when 𝛾 = 0, the Focal loss is equivalent to the original loss L. In

all experiments, we set 𝛼 to 0.2 and 𝛾 to 1.
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Dataset Method
MAE ↓ RMSE ↓ G-Mean ↓

All Few All Few All Few

B-H

Vanilla 4.5±0.2 5.3±0.4 7.0±0.5 7.3±0.6 2.5±0.1 3.3±0.3
+Focal 4.6±0.2 5.0±0.3 6.5±0.3 6.8±0.5 2.8±0.1 3.0±0.4
+LDS 4.8±0.3 4.6±0.5 7.1±0.7 6.3±0.5 2.8±0.2 2.8±0.4
+Focal+LDS 4.7±0.2 5.4±0.4 6.7±0.2 7.3±0.5 2.8±0.1 3.4±0.4

S-M

Vanilla 7.5±0.3 8.5±6.8 11.1±0.4 12.3±9.3 4.1±0.2 4.5±3.5
+Focal 8.5±0.1 7.0±2.3 12.0±0.3 10.0±3.6 5.0±0.1 3.5±1.1
+LDS 8.0±0.3 6.1±2.8 11.3±0.4 8.1±3.8 4.7±0.2 3.8±1.7
+Focal+LDS 8.6±0.3 5.7±2.2 12.0±0.4 7.8±3.2 5.1±0.1 3.0±1.3

AZ

Vanilla 22.1±1.7 26.0±6.9 29.7±2.1 32.8±7.4 12.0±1.2 15.6±6.7
+Focal 22.0±1.0 26.2±4.4 29.5±1.3 33.2±5.0 13.0±0.7 16.1±5.9
+LDS 22.2±1.3 24.4±6.5 29.1±1.6 30.6±6.8 12.9±0.8 14.8±7.3
+Focal+LDS 22.0±1.0 25.7±5.9 29.3±1.2 33.2±7.6 12.5±0.8 14.2±4.9

Table 2: Comparison of reaction yield prediction perfor-
mance with andwithout cost-sensitive re-weightingmethods
on all and few-shot regions. The best results are highlighted
in bold, and the second-best results are underlined.

3.1.2 Label distribution smoothing. Label distribution smoothing

(LDS) [16] assigns varying weights to training samples based on

their label density. The objective is to mitigate the impact of re-

dundant samples while accentuating the significance of sparsely

represented samples during training. To account for the continuity

of labels, a Gaussian kernel is employed to smooth the empirical

label density distribution of the label space Y. The weight𝑤𝑖 for

each training sample is defined as:

𝑤𝑖 =
1∫

Y 𝐾 (𝑦𝑖 , 𝑦) |C𝑘 |𝑑𝑦
, (3)

where 𝐾 (𝑦,𝑦′) = exp

(
− ∥𝑦−𝑦′ ∥2

2𝜎2

)
represents a Gaussian kernel

with kernel size ℓ and standard deviation 𝜎 , and C𝑘 denotes the

set of training samples in the 𝑘-th bin where 𝑦𝑖 ∈ [𝑏𝑘−1, 𝑏𝑘 ). In all

experiments, we set ℓ to 5 and 𝜎 to 2.

3.2 Effectiveness in High-Yield Predictions
Table 2 presents the experiment results on the same three yield pre-

diction datasets, demonstrating the effectiveness of cost-sensitive

re-weighting methods (i.e., Focal loss, LDS, and the combination

of both) when integrated with existing yield prediction models.

Across all three datasets, imbalanced regression methods consis-

tently achieve the best results in all 9 combinations of evaluation

metrics (MAE, RMSE, and G-Mean) in the few-shot region. Mean-

while, the base model (“Vanilla”) without any imbalanced regression

designs maintains its superiority in 6 out of 9 combinations in the

all region. This observation is understandable and aligns with the

trade-off between prediction performance in underrepresented data

regions and performance across the entire dataset.

However, it’s important to note that while there is a performance

drop in the all region, this drop is not significant compared to the

substantial performance improvement observed in the few-shot re-
gion. Specifically, the average performance drops are 6.7%, 15.7%,

and 0.7%, while the average performance improvements are 14.0%,

34.3%, and 7.3% on each dataset, respectively. This observation

underscores the effectiveness of incorporating simple imbalanced

regression methods into existing yield prediction models as a plug-

in module. Furthermore, it is important to highlight that by tailoring

more sophisticated imbalanced regression techniques to yield pre-

diction, we could anticipate a further performance improvement.

4 CONCLUSION
In this paper, we have highlighted a critical issue in reaction yield

prediction – the prevalent focus on achieving superior performance

across the entire yield spectrum, often at the expense of overlook-

ing yield regions with limited training samples, particularly the

high-yield areas, which are of greater concern to chemists. Through

extensive experiments on three real-world datasets, we have em-

phasized the urgent need to reframe reaction yield prediction as an

imbalanced regression problem. Moreover, we have demonstrated

that by incorporating simple cost-sensitive re-weighting techniques,

we can significantly enhance the performance of yield prediction

models in underrepresented high-yield regions.
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