)
s HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained

Heterogeneous Graph Neural Networks
Yihong Ma*

University of Notre Dame
Notre Dame, Indiana, USA

Ning Yan
Futurewei Technologies Inc.
Santa Clara, California, USA

Jiayu Li

Syracuse University

yma5@nd.edu

Masood Mortazavi
Futurewei Technologies Inc.
Santa Clara, California, USA

masood.mortazavi@futurewei.com

ABSTRACT

Graphs have emerged as a natural choice to represent and analyze
the intricate patterns and rich information of the Web, enabling
applications such as online page classification and social recom-
mendation. The prevailing “pre-train, fine-tune” paradigm has been
widely adopted in graph machine learning tasks, particularly in
scenarios with limited labeled nodes. However, this approach often
exhibits a misalignment between the training objectives of pre-
text tasks and those of downstream tasks. This gap can result in
the “negative transfer” problem, wherein the knowledge gained
from pre-training adversely affects performance in the downstream
tasks. The surge in prompt-based learning within Natural Language
Processing (NLP) suggests the potential of adapting a “pre-train,
prompt" paradigm to graphs as an alternative. However, existing
graph prompting techniques are tailored to homogeneous graphs,
neglecting the inherent heterogeneity of Web graphs. To bridge
this gap, we propose HetGPT, a general post-training prompting
framework to improve the predictive performance of pre-trained
heterogeneous graph neural networks (HGNNs). The key is the
design of a novel prompting function that integrates a virtual class
prompt and a heterogeneous feature prompt, with the aim to re-
formulate downstream tasks to mirror pretext tasks. Moreover,
HetGPT introduces a multi-view neighborhood aggregation mech-
anism, capturing the complex neighborhood structure in heteroge-
neous graphs. Extensive experiments on three benchmark datasets
demonstrate HetGPT’s capability to enhance the performance of
state-of-the-art HGNNs on semi-supervised node classification.

CCS CONCEPTS

« Computing methodologies — Neural networks.

KEYWORDS

Heterogeneous graph neural networks; pre-training; prompt tuning

“Work done as an intern at Futurewei Technologies Inc.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

WWW 24, May 13-17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05.
https://doi.org/10.1145/3589334.3645685

nyan@futurewei.com

Syracuse, New York, USA
jliz21@data.syr.edu

Nitesh V. Chawla
University of Notre Dame
Notre Dame, Indiana, USA

nchawla@nd.edu

ACM Reference Format:

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V. Chawla.
2024. HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained
Heterogeneous Graph Neural Networks. In Proceedings of the ACM Web
Conference 2024 (WWW °24), May 1317, 2024, Singapore, Singapore. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3589334.3645685

1 INTRODUCTION

The Web, an ever-expanding digital universe, has transformed into
an unparalleled data warehouse. Within this intricate web of data,
encompassing diverse entities and patterns, graphs have risen as
an intuitive representation to encapsulate and examine the Web’s
multifaceted content, such as academic articles [7], social media
interactions [3], chemical molecules [8], and online grocery items
[31]. In light of this, graph neural networks (GNNs) have emerged
as the state of the art for graph representation learning, which
enables a wide range of web-centric applications such as online page
classification [25], social recommendation [4], pandemic trends
forecasting [21], and dynamic link prediction [32, 33].

A primary challenge in traditional supervised graph machine
learning is its heavy reliance on labeled data. Given the magnitude
and complexity of the Web, obtaining annotations can be costly
and often results in data of low quality. To address this limitation,
the “pre-train, fine-tune” paradigm has been widely adopted, where
GNN:ss are initially pre-trained with some self-supervised pretext
tasks and are then fine-tuned with labeled data for specific down-
stream tasks. Yet, this paradigm faces the following challenges:

¢ (C1) Fine-tuning methods often overlook the inherent gap be-
tween the training objectives of the pretext and the downstream
task. For example, while graph pre-training may utilize binary
edge classification to draw topologically proximal node embed-
dings closer, the core of a downstream node classification task
would be to ensure nodes with the same class cluster closely.
Such misalignment makes the transferred node embeddings sub-
optimal for downstream tasks, i.e., negative transfer [34, 43]. The
challenge arises: how to reformulate the downstream node classifi-
cation task to better align with the contrastive pretext task?

e (C2) In semi-supervised node classification, there often exists a
scarcity of labeled nodes. This limitation can cause fine-tuned
networks to highly overfit these sparse [29] or potentially im-
balanced [22] nodes, compromising their ability to generalize

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589334.3645685
https://doi.org/10.1145/3589334.3645685
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645685&domain=pdf&date_stamp=2024-05-13

WWW °24, May 13-17, 2024, Singapore, Singapore

to new and unlabeled nodes. The challenge arises: how to cap-
ture and generalize the intricate characteristics of each class in the
embedding space to mitigate this overfitting?

(C3) Given the typically large scale of pre-trained GNNs, the
attempt to recalibrate all their parameters during the fine-tuning
phase can considerably slow down the rate of training conver-
gence. The challenge arises: how to introduce only a small number
of trainable parameters in the fine-tuning stage while keeping the
parameters of the pre-trained network unchanged?

One potential solution that could partially address these chal-
lenges is to adapt the “pre-train, prompt” paradigm from natural
language processing (NLP) to the graph domain. In NLP, prompt-
based learning has effectively generalized pre-trained language
models across diverse tasks. For example, a sentiment classification
task like “The Web Conference will take place in the scenic city of
Singapore in 2024” can be reframed by appending a specific textual
prompt “I feel so [MASK]” to the end. A language model pre-trained
on next word prediction is highly likely to predict “[MASK]” as
“excited” instead of “frustrated”, without necessitating extensive fine-
tuning. With this methodology, certain downstream tasks can be
seamlessly aligned with the pre-training objectives. While few prior
works [5, 19, 27-29] have delved into crafting various prompting
templates for graphs, their emphasis remains strictly on homoge-
neous graphs. This narrow focus underscores the last challenge
inherent to the heterogeneous graph structures typical of the Web:
e (C4) Homogeneous graph prompting techniques typically rely on

the pre-trained node embeddings of the target node or the aggre-
gation of its immediate neighbors’ embeddings for downstream
node classification, which ignores the intricate neighborhood
structure inherent to heterogeneous graphs. The challenge arises:
how to leverage the complex heterogeneous neighborhood structure
of a node to yield more reliable classification decisions?

To comprehensively address all four aforementioned challenges,
we propose HetGPT, a general post-training prompting framework
tailored for heterogeneous graphs. Represented by the acronym
Heterogeneous Graph Prompt Tuning, HetGPT serves as an aux-
iliary system for HGNNs that have undergone constrastive pre-
training. At the core of HetGPT is a novel graph prompting function
that reformulates the downstream node classification task to align
closely with the pretext contrastive task. We begin with the virtual
class prompt, which generalizes the intricate characteristics of each
class in the embedding space. Then we introduce the heterogeneous
feature prompt, which acts as a task-specific augmentation to the
input graph. This prompt is injected into the feature space and the
prompted node features are then passed through the pre-trained
HGNN, with all parameters in a frozen state. Furthermore, a multi-
view neighborhood aggregation mechanism, that encapsulates the
complexities of the heterogeneous neighborhood structure, is ap-
plied to the target node, generating a node token for classification.
Finally, Pairwise similarity comparisons are performed between
the node token and the class tokens derived from the virtual class
prompt via the contrastive learning objectives established during
pre-training, which effectively simulates the process of deriving a
classification decision. In summary, our main contributions include:

o To the best of our knowledge, this is the first attempt to adapt
the “pre-train, prompt” paradigm to heterogeneous graphs.

1016

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V. Chawla

e We propose HetGPT, a general post-training prompting frame-
work tailored for heterogeneous graphs. By coherently integrat-
ing a virtual class prompt, a heterogeneous feature prompt, and
a multi-view neighborhood aggregation mechanism, it elegantly
bridges the objective gap between pre-training and downstream
tasks on heterogeneous graphs.

Extensive experiments on three benchmark datasets demonstrate
HetGPT’s capability to enhance the performance of state-of-the-
art HGNNs on semi-supervised node classification.

2 RELATED WORK

Heterogeneous graph neural networks. Recently, there has been
a surge in the development of heterogeneous graph neural networks
(HGNNS) designed to learn node representations on heterogeneous
graphs [20, 35, 40]. For example, HAN [36] introduces hierarchi-
cal attention to learn the node-level and semantic-level structures.
MAGNN [7] incorporates intermediate nodes along metapaths to
encapsulate the rich semantic information inherent in heteroge-
neous graphs. HetGNN [42] employs random walk to sample node
neighbors and utilizes LSTM to fuse heterogeneous features. HGT
[11] adopts a transformer-based architecture tailored for web-scale
heterogeneous graphs. However, a shared challenge across these
models is their dependency on high-quality labeled data for training.
In real-world scenarios, obtaining such labeled data can be resource-
intensive and sometimes impractical. This has triggered numerous
studies to explore pre-training techniques for heterogeneous graphs
as an alternative to traditional supervised learning.
Heterogeneous graph pre-training. Pre-training techniques have
gained significant attention in heterogeneous graph machine learn-
ing, especially under the scenario with limited labeled nodes [18, 39].
Heterogeneous graphs, with their complex types of nodes and edges,
require specialized pre-training strategies. These can be broadly
categorized into generative and contrastive methods. Generative
learning in heterogeneous graphs primarily focuses on reconstruct-
ing masked segments of the input graph, either in terms of the
underlying graph structures or specific node attributes [6, 10, 30].
On the other hand, contrastive learning on heterogeneous graphs
aims to refine node representations by magnifying the mutual in-
formation of positive pairs while diminishing that of negative pairs.
Specifically, representations generated from the same data instance
form a positive pair, while those from different instances consti-
tute a negative pair. Some methods emphasizes contrasting node-
level representations [13, 14, 37, 41], while another direction con-
trasts node-level representations with graph-level representations
[15, 24, 26]. In general, the efficacy of contrastive methods surpasses
that of generative ones [30], making them the default pre-training
strategies adopted in this paper.

Prompt-based learning on graphs. The recent trend in Natu-
ral Language Processing (NLP) has seen a shift from traditional
fine-tuning of pre-trained language models (LMs) to a new para-
digm: “pre-train, prompt” [17]. Instead of fine-tuning LMs through
task-specific objective functions, this paradigm reformulates down-
stream tasks to resemble pre-training tasks by incorporating textual
prompts to input texts. This not only bridges the gap between pre-
training and downstream tasks but also instigates further research
integrating prompting with pre-trained graph neural networks [28].
For example, GPPT [27] and GraphPrompt [19] introduce prompt

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks WWW ’24, May 13-17, 2024, Singapore, Singapore

Node emb. I(Sec 4.2)
Author (A)

Pre- E } xK

Leon training Paper (P)

! i

! I

| { :

| { !

= = — 0.8 | Class 1 | Type-specific : !
/ﬁl//ﬁ/ : c:::z Iﬁ? i feature tokens j = }xK i

| ! !

| ! !

I i |

Class tokens

Positive Negative Class 3 Subject (S) :
samples samples
Parameter Parameter
transfer Multi-View Neighborhood transfer [S |
Aggregation (Sec. 4.4) I(Sec. 4.4) Type-based Metapath-based |
)8 Prompt | aggregation aggregation |
Node token tuning | :
(@] | |
g S 2 U N - |
S = : I
= ':>7/ Class 1 // = §g = 02 | attention Al>f St l
., < | AP

5 01 | b :
_ Inject Positive Negative i] A2 |
| into the samples samples :— ‘_Up;ati; | Semantic :
| Heterogeneous Feature . feature “.. Virtual Class Prompt 9 | g: attention Pa I
| Prompt F (Sec. 4.3) space (Sec. 4.2) | Fixed | ! :

Figure 1: Overview of the HetGPT architecture: Initially, an HGNN is pre-trained alongside a contrastive head using a contrastive
learning objective, after which their parameters are frozen. Following this, a heterogeneous feature prompt (Sec. 4.3) is injected
into the input graph’s feature space. These prompted node features are then processed by the pre-trained HGNN, producing
the prompted node embeddings. Next, a multi-view neighborhood aggregation mechanism (Sec. 4.4) captures both local and
global heterogeneous neighborhood information of the target node, generating a node token. Finally, pairwise similarity
comparisons are performed between this node token and class tokens derived from the virtual class prompt (Sec. 4.2) via the
same contrastive learning objective from pre-training. As an illustrative example of employing HetGPT for node classification:
consider a target node P, associated with class 1, its positive samples during prompt tuning are constructed using the class
token of class 1, while negative samples are drawn from class tokens of classes 2 and 3 (i.e., all remaining classes).

templates to align the pretext task of link prediction with down- Definition 4: Semi-supervised node classification. Given a
stream classification. GPF [5] and VNT-GPPE [29] employ learnable heterogeneous graph G = {V, &} with node features X, we aim to
perturbations to the input graph, modulating pre-trained node rep- predict the labels of the target node set Vr of type T € A. Each
resentations for downstream tasks. However, all these techniques target node v € Vr corresponds to a class label y, € Y. Under
cater exclusively to homogeneous graphs, overlooking the distinct the semi-supervised learning setting, while the node labels in the
complexities inherent to the heterogeneity in real-world systems. labeled set V € Vr are provided, our objective is to predict the

labels for nodes in the unlabeled set Vi = V¢ \ V.

Definition 5: Pre-train, fine-tune. We introduce the “pre-train,

3 PRELIMINARIES fine-tune” paradigm for heterogeneous graphs. During the pre-

Definition 1: Heterogeneous graph. A heterogeneous graph is training stage, an encoder fy parameterized by maps each node

. . V to a low-dimensional representation h, € R¥. Typicall fe
defined as G = {V, &}, where V is the set of nodes and & is th o€ p o ypicaty, Jo
efinedas G = {), where 'V is the set of nodes and & is the is an HGNN that takes a heterogeneous graph G = {V, E} and its

node features X as inputs. For each target node v € Vr, we con-
struct its positive $, and negative sample sets N, for contrastive
learning. The contrastive head gy, parameterized by ¢, discrimi-
nates the representations between positive and negative pairs. The
pre-training objective can be formulated as:

set of edges. It is associated with a node type mapping function
¢ : V — A and an edge type mapping function ¢ : & — R. A
and R denote the node type set and edge type set, respectively. For
heterogeneous graphs, we require |A| + |R]| > 2. Let X = {X4 |
A € A} be the set of all node feature matrices for different node
types. Specifically, X4 € RIValxda is the feature matrix where
each row corresponds to a feature vector xlA of node i of type A. All
nodes of type A share the same feature dimension d4, and nodes of 0", y* = argmin Lcop (9¢’ o, V1, P, N) , (1)
different types can have different feature dimensions. 0.y

Definition 2: Network schema. The network schema is defined

as S = (A, R), which can be seen as a meta template for a hetero- where Lcon denotes the contrastive loss. Both # = {#, | v € Vr}
geneous graph G. Specifically, network schema is a graph defined and N'= {Ny | v € Vr} canbe nodes or graphs. They may be direct

over the set of node types A, with edges representing relations augmentations or distinct views of the corresponding data instances,
from the set of edge types R. contingent on the contrastive learning techniques employed.

Definition 3: Metapath. A metapath P is a pa th defined by a In the fine-tuning stage, a prediction head hy, parameterized

R, R, by 7, is employed to optimize the learned representations for the
pattern of node and edge types, denoted as A; ELN Ay — - — downstream node classification task. Given a set of labeled target
Aj4q (abbreviated as A1Az - -+ Aj4q), where A; € A and R; € R. nodes V. and their corresponding label set Y, the fine-tuning

1017

WWW °24, May 13-17, 2024, Singapore, Singapore

objective can be formulated as:

min Ly (hy, for, V1Y),
.

0™, n* = arg ()
0

where Lgy, is the supervised loss. Notably, the parameters ¢ are

initialized with those obtained from the pre-training stage, 6*.

4 METHOD

In this section, we introduce HetGPT, a novel graph prompting tech-
nique specifically designed for heterogeneous graphs, to address
the four challenges outlined in Section 1. In particular, HetGPT
consists of the following key components: (1) prompting function
design; (2) virtual class prompt; (3) heterogeneous feature prompt; (4)
multi-view neighborhood aggregation; (5) prompt-based learning and
inference. The overall framework of HetGPT is shown in Figure 1.

4.1 Prompting Function Design (C1)

Traditional fine-tuning approaches typically append an additional
prediction head and a supervised loss for downstream tasks, as de-
picted in Equation 2. In contrast, HetGPT pivots towards leveraging
and tuning prompts specifically designed for node classification.

In prompt-based learning for NLP, a prompting function em-
ploys a pre-defined template to modify the textual input, ensuring
its alignment with the input format used during pre-training. Mean-
while, within graph-based pre-training, contrastive learning has
overshadowed generative learning, especially in heterogeneous
graphs [15, 24, 37], as it offers broader applicability and harnesses
overlapping task subspaces, which are optimal for knowledge trans-
fer. Therefore, these findings motivate us to reformulate the down-
stream node classification task to align with contrastive approaches.
Subsequently, a good design of graph prompting function becomes
pivotal in matching these contrastive pre-training strategies.

Central to graph contrastive learning is the endeavor to maximize
mutual information between node-node or node-graph pairs. In
light of this, we propose a graph prompting function, denoted as I(+).
This function transforms an input node v into a pairwise template
that encompasses a node token z, and a class token q:

®)

Within the framework, g, represents a trainable embedding for
class ¢ in the downstream node classification task, as explained in
Section 4.2. Concurrently, z, denotes the latent representation of
node v, derived from the pre-trained HGNN, which will be further
discussed in Section 4.3 and Section 4.4.

1(v) = [20,qc]-

4.2 Virtual Class Prompt (C2)

Instead of relying solely on direct class labels, we propose the con-
cept of a virtual class prompt, a paradigm shift from traditional node
classification. Serving as a dynamic proxy for each class, the prompt
bridges the gap between the abstract representation of nodes and
the concrete class labels they are affiliated with. By leveraging
the virtual class prompt, we aim to reformulate downstream node
classification as a series of mutual information calculation tasks,
thereby refining the granularity and adaptability of the classifica-
tion predictions. This section delves into the design and intricacies
of the virtual class prompt, illustrating how it can be seamlessly
integrated into the broader contrastive pre-training framework.

1018

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V. Chawla

4.2.1 Class tokens. We introduce class tokens, the building blocks
of the virtual class prompt, which serve as representative symbols
for each specific class. Distinct from discrete class labels, these
tokens can capture intricate class-specific semantics, providing a
richer context for node classification. We formally define the set of
class tokens, denoted as Q, as follows:

4

where C is the total number of classes in Y. Each token g, € R?
is a trainable vector and shares the same embedding dimension d
with the node representations from the pre-trained network fy-.

Q=1{q1.92....9¢c},

4.2.2 Prompt initialization. Effective initialization of class tokens
facilitates a smooth knowledge transfer from pre-trained heteroge-
neous graphs to the downstream node classification. We initialize
each class token, g, by computing the mean of embeddings for
labeled nodes that belong to the respective class. Formally,
o= — Zhu, Vee{l2...,C}, (5)
Ne
veVy
Yo=C
where N, denotes the number of nodes with class c in the labeled
set Vr, and h, represents the pre-trained embedding of node v. This
initialization aligns each class token with the prevalent patterns of
its respective class, enabling efficient prompt tuning afterward.

4.3 Heterogeneous Feature Prompt (C3)

Inspired by recent progress with visual prompts in the vision do-
main [1, 12], we propose a heterogeneous feature prompt. This ap-
proach incorporates a small amount of trainable parameters directly
into the feature space of the heterogeneous graph G. Throughout
the training phase of the downstream task, the parameters of the
pre-trained network fyp« remain unchanged. The key insight behind
this feature prompt lies in its ability to act as task-specific augmen-
tations to the original graph. It implicitly tailors the pre-trained
node representations for an effective and efficient transfer of the
learned knowledge from pre-training to the downstream task.

Prompting techniques fundamentally revolve around the idea of
augmenting the input data to better align with the pretext objectives.
This makes the design of a graph-level transformation an important
factor for the efficacy of prompting. To illustrate, let’s consider a
homogeneous graph G with its adjacency matrix A and node feature
matrix X. We introduce tg,a graph-level transformation function
parameterized by &, such as changing node features, adding or
removing edges, etc. Prior research [5, 28] has proved that for any
transformation function g, there always exists a corresponding
feature prompt p* that satisfies the following property:

for (A X+ p*) = for (t:(A, X)) + Opp, (6)

where Opg represents the deviation between the node representa-
tions from the graph that’s augmented by ts and the graph that’s
prompted by p*. This discrepancy is primarily contingent on the
quality of the learned prompt p* as the parameters 6* of the pre-
trained model are fixed. This perspective further implies the feasi-
bility and significance of crafting an effective feature prompt within
the graph’s input space, which emulates the impact of learning a
specialized augmentation function tailored for downstream tasks.

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks WWW ’24, May 13-17, 2024, Singapore, Singapore

However, in heterogeneous graphs, nodes exhibit diverse at- based on the network schema. Furthermore, it is also vital to lever-
tributes based on their types, and each type has unique dimension- age the prompted pre-trained node embeddings H (as detailed in
alities and underlying semantic meanings. Take a citation network Section 4.3) in the aggregation. Taking all these into consideration,
for instance: while paper nodes have features represented by word we introduce a multi-view neighborhood aggregation mechanism.
embeddings derived from their abstracts, author nodes utilize one- This strategy incorporates both type-based and metapath-based
hot encoding as features. Given this heterogeneity, the approach neighbors, ensuring a comprehensive representation that captures
used in homogeneous graph prompting methods may not be effec- both local (i.e., network schema) and global (i.e., metapath) patterns.
tive or yield optimal results when applied to heterogeneous graphs, 4.4.1 Type-based aggregation. Based on the network schema out-
as it uniformly augments node features for all node types via a lined in Definition 2, a target node i € V7 can directly connect
single and all-encompassing feature prompt. to M different node types {Aj, Az, ..., Apr}. Given the variability
4.3.1 Type-specific feature tokens. To address the above challenge, in contributions from different nodes of the same type to node
we introduce type-specific feature tokens, which are a set of desig- i and the diverse influence from various types of neighbors, we
nated tokens that align with the diverse input features inherent to utilize a two-level attention mechanism [36] to aggregate the local
each node type. Given the diversity in scales and structures across information of node i. For the first level, the information h‘;\m is

various graphs, equating the number of feature tokens to the node
count is often sub-optimal. This inefficiency is especially obvious
in large-scale graphs, as this design demands extensive storage due
to its O(|V|) learnable parameters. In light of this, for each node KAm — & Z a?f" . i,j , (11)
type, we employ a feature prompt consisting of a limited set of ’

independent basis vectors of size K, i.e., f,:‘ € RdA, with d4 as the
feature dimension associated with node type A € A:

fused from the neighbor set NIA’” for node i using node attention:

JENAMULiY

exp ((f (azm . [I~11||il]]))

A cA A %ij T v (12)
F={Faldacat, Ta={f K)o Seenmogsy @ (o (ah, - laillie])
where K is a hyperparameter and its value can be adjusted based where o(+) is a non-linear activation function, || denotes concatena-
on the specific dataset in use. tion,and a4, € R24%1 i5 the node attention vector shared across
4.3.2 Prompted node features. For each node i of type A € A, all nodes of type Ay,. For the second level, the type-based embed-
its node feature vector xf\ is augmented by a linear combination ding of node i, denoted as z;fP, is derived by synthesizing all type
of feature token f]? through an attention mechanism, where the representations {h‘?l,h?z, . ,,h’?M } through semantic attention:
attention weights are denoted by w;.Ak. Consequently, the prompted M
node feature vector evolves as: 2P = Z Ba,, - h?m’ Ba,, = M’ (13)
K = 2=y exp(wa,)
=xt ey wh (8) 1
. s Am
! !]; bk Tk WA, = m Z a}—P - tanh(Wrp - hi + brp), (14)
T i€eVr
exp(a((f,f)T'x?)) Ixi - 4 _
WiAk = , 9) where arp € R%*! is the type-based semantic attention vector
' 25.(:1 exp (a ((fJA)T . x{‘)) shared across all node types, Wrp € R%*? is the weight matrix, and

brp € R9%1 is the bias vector.

4.4.2 Metapath-based aggregation. In contrast to type-based ag-
gregation, metapath-based aggregation provides a perspective to
capture global information of a target node i € Vr. This is attrib-
uted to the nature of metapaths, which encompass connections
that are at least two hops away. Given a set of defined metapaths
H-= for (G, X) eRIVIxd, (10) {P1, Py, ..., PN}, the information from neighbors of node i con-
nected through metapath P, is aggregated via node attention:

where o (-) represents a non-linear activation function. Subsequently,
we utilize these prompted node features, represented as X, together

with the heterogeneous graph, G. They are then passed through the

pre-trained HGNN fy+ during the prompt tuning phase to obtain a

prompted node embedding matrix H:

4.4 Multi-View Neighborhood Aggregation (C4)

In prompt-based learning for homogeneous graphs, the node token P, P, i

; : : o h"=o Z a5 - hil, (15)
z, in Equation 3 for a given node v € V is directly equated to hy, ‘ N I
which is the embedding generated by the pre-trained network fy- JEN;U{i}
[38]. Altern'atively,. it can als,.o be d.erived.from an aggregation of exp (g (a; - [hi|lh]]))
the embeddings of its immediate neighboring nodes [27]. However, af n — “ , (16)
in heterogeneous graphs, such aggregations are complicated due to " D NP U (i} &XP (o (a; - [hi||h k]))
the inherent heterogeneity of neighboring structures. For example, ' !
given a target node with the type “paper”, connections can be estab- where ap, € R24X1 js the node attention vector shared across
lished either with other “paper” nodes through different metapaths all nodes connected through metapath Py,. To compile the global
(e.g., PAP, PSP) or with nodes of varied types (i.e., author or subject) structural information from various metapaths, we fuse the node

1019

WWW °24, May 13-17, 2024, Singapore, Singapore

embeddings {hfl, hfz, .. ,th } derived from each metapath into a
single embedding using semantic attention:

N
P, exp(wp,)
MP = Z[gpn " B, = o (17)
i=1 Zk:l eXP(WPk)
1 T P,
e, = > agp - tanh(Wyp - b +byp), (18)
ieVr
where ayp € R4%! is the metapath-based semantic- attention vec-

tor shared across all metapaths, Wyp € R9%d ig the weight matrix,
and byp € R¥1 is the bias vector. Integrating the information
from both aggregation views, we obtain the final node token, z;, by
concatenating the type-based and the metapath-based embedding:

zi=o (W[z,MPnz;fP] +b), (19)

where o(-) is a non-linear activation function, W € R24%d ig the

Rdxl

weight matrix, and b € is the bias vector.

4.5 Prompt-based Learning and Inference

Building upon our prompt design detailed in the preceding sections,
we present a comprehensive overview of the prompt-based learn-
ing and inference process for semi-supervised node classification.
This methodology encompasses three primary stages: (1) prompt
addition, (2) prompt tuning, and (3) prompt-assisted prediction.

4.5.1 Prompt addition. Based on the graph prompting function
I(-) outlined in Equation (3), we parameterize it using the trainable
virtual class prompt Q and the heterogeneous feature prompt ¥ To
ensure compatibility during the contrastive loss calculation, which
we detail later, we use a single-layer Multilayer Perceptron (MLP) to
project both z, and g, onto the same embedding space. Formally:

z,=MLP(zy), q.=MLP(qc), lg#(0) = [z, qc]. (20)

4.5.2 Prompt tuning. Our prompt design allows us to reuse the
contrastive head from Equation 1 for downstream node classifica-
tion without introducing a new prediction head. Thus, the original
positive P, and negative samples N, of a labeled node v € Vp,
used during pre-training are replaced with the virtual class prompt
corresponding to its given class label y,,.

Py = {4y, } No=Q\{qy,} (21)

Consistent with the contrastive pre-training phase, we employ the
InfoNCE [23] loss to replace the supervised classification loss Lsyp:

Leon = - Z log) . (22)

UE(VL
Here, sim(-) denotes a similarity function between two vectors, and
7 denotes a temperature hyperparameter. To obtain the optimal
prompts, we utilize the following prompt tuning objective:

Q", F* = argmin Lcon (W*,fe*’ lo.7 (VL) + ALy, (23)
QF

(exp(sim(z), qy,)/7)
C., exp(sim(zh, 4)/7)

where A is a regularization hyperparameter. The orthogonal reg-
ularization [2] loss L, 1, is defined to ensure the label tokens in
the virtual class prompt remain orthogonal during prompt tuning,
fostering diversified representations of different classes:

Lortn = ”QQT - IH?—: > (24)

1020

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V. Chawla

Table 1: Detailed statistics of the benchmark datasets. Under-
lined node types are the target nodes for classification.

Dataset # Nodes # Edges Metapaths | # Classes
Paper: 4019 | s 13407 | PAP
ACM Authf)r: 7,167 P-S: 4,019 PSP 3
Subject: 60
g;lt};;r;z,;)g; P-A: 19,645 APA
DBLP | PR | pTisssio | APCPA 4
Conference: 20 P-C: 14,528 APTPA
Movie: 4,278
; M-D: 4,278 MAM
IMDB Director: 2,081 . 3
Actor: 5.257 M-A: 12,828 MDM
where QO = [q1.q2.....qc]" € RE*? is the matrix form of the

virtual class prompt Q, and I € R€XC is an identity matrix.
4.5.3 Prompt-assisted prediction. During the inference phase, for
an unlabeled target node v € Vs, the predicted probability of node
v belonging to class ¢ is given by:

exp(sim(z;, q¢))

X, exp(sim(z},q}))

P(yp=c¢) = (25)
This equation computes the similarity between the projected node
token zj, and each projected class token g, using the softmax
function to obtain class probabilities. The class with the maximum
likelihood for node v is designated as the predicted class 7,:

Jy = argmax P(y, = ¢), (26)
c

5 EXPERIMENTS

In this section, we conduct a thorough evaluation of our proposed
HetGPT to address the following research questions:

e (RQ1) Can HetGPT improve the performance of pre-trained het-
erogeneous graph neural networks on the semi-supervised node
classification task?

¢ (RQ2) How does HetGPT perform under different settings, i.e.,
ablated models and hyperparameters?

¢ (RQ3) How does the prompt tuning efficiency of HetGPT com-
pare to its fine-tuning counterpart?

¢ (RQ4) How interpretable is the learned prompt in HetGPT?

5.1 Experiment Settings

5.1.1 Datasets. We evaluate our methods using three benchmark
datasets: ACM [44], DBLP [7], and IMDB [7]. Detailed statistics
and descriptions of these datasets can be found in Table 1. For the
semi-supervised node classification task, we randomly select 1, 5,
20, 40, or 60 labeled nodes per class as our training set. Additionally,
we set aside 1,000 nodes for validation and another 1,000 nodes for
testing. Our evaluation metrics include Macro-F1 and Micro-F1.

5.1.2 Baseline models. We compare our approach against methods
belonging to three different categories:

e Supervised HGNNs: HAN [36], HGT [11], MAGNN ([7];
e HGNNs with “pre-train, fine-tune”:

- Generative: HGMAE [30];

- Contrastive (our focus): DMGI [24], HeCo [37], HDMI [15];
e GNNs with“pre-train, prompt”: GPPT [27].

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks

WWW ’24, May 13-17, 2024, Singapore, Singapore

Table 2: Experiments results on three semi-supervised node classification benchmark datasets. We report the average perfor-
mance for 10 repetitions. The best results are highlighted in bold, while improved results attributed to HetGPT are underlined.
The “+” symbol indicates the integration of HetGPT with the corresponding original models as an auxiliary system.

Dataset | Metric | # Train | HAN HGT MAGNN HGMAE GPPT DMGI +HetGPTi HeCo +HetGPTi HDMI +HetGPT
1 27.08:205 49.74:938 38.62:287 28.0017.21 21.85:1.09 | 47.28x023 52.0713.28 | 54.24:5.0 55.90+8.42 | 65.58:7.45 71.00:5.32

5 84.84:095 84.40s74s 84.45:1079 87.34s162 71.77s673 | 86.12:045 87.91s077 | 86.55:13 87.03:+115 | 88.88:173 91.08:037

Ma-F1 20 84.37:125 84.40:551 85.134155 88.61x110 80.90:08s | 86.64x065 88.65:081 | 88.09:x121 88.63:085 | 90.76x079 92.15:025

40 86332066 86.171626 86.26x0.67 88.31s100 81.78s146 | 87.522046 87.88s060 | 87.03:140 86.88x005 | 90.62:021 91.31x039

ACM 60 86.31s206 86.15:6.05 86.56+196 88.81x072 84.15:047 | 88.71s059 90.33s041 ! 88.95:085 89.13s050 ! 91.29:057 92.09:035
1 49.76:035 58.52x675 51.27x045 40.82:726 34.32:387 | 49.63x025 54.29:4.49 1 54.81x988 63.01:061 1 64.89:820 73.41:251

5 84.96:112 85.11:406 853ls11s 87.47s155 75.4lsses | 86.16:047 88.05:077 | 86.85:13 87.26:109 | 89.01s1e0 91.09:057

Mi-F1 20 83.33x158 83.05:3.62 83.88+160 88.31:1.15 81.20x0.63 | 85.94:064 88.40+0.79 | 87.87s1.24 88.60+0.79 | 90.55:0.5 91.85:0.26

40 86.24z067 86.21x3.68 86.39x0.69 88.29x104 82.02:140 | 87.09:047 87.781079 | 86.56x156 86.64s105 | 90.41x023 9111039

60 85.56s248 85.49:474 86.031240 88.59:x0711 84.16:045 | 88.34z063 90.131045 | 88.48:004 8891s0ex | 91.16:056 91.94:03

1 50.28:841 70.86:682 52.52:867 82.7517.96 39.17x125 | 76.00:3.27 81.33+1.90 | 88.79:0.44 89.44+0.54 | 88.28:058 90.25:0.29

5 82.85:8.60 82.7015.28 82.24:085 83.47x457 54.13x106 | 81.12:120 81.85+1.89 | 91.5610.23 91.87+0.43 | 91.00:03 91.39+0.46

Ma-F1 20 89.41:061 89.61s570 89.36:058 89.31s147 71.06s031 | 84.03:120 84.41s13 | 89.90:037 91.17x052 | 91.302017 91.64+033

40 89.25:055 89.59x669 89.42:055 89.99x045 73.392050 | 85.43:109 85.91s091 | 90.45:031 91.48s041 | 90.77x028 91.84:034

DBLP 60 89.77z055 88.99:8.69 89.15s052 91.30x028 72992044 | 86.54z005 87.09s070 ! 90.25:029 91.27s017 ! 90.67x033 91.39:0.14
1 51.72:802 73.71:s574 51.23z076 84.3417.02 41.84x111 | 78.62x253 82.83+1.63 : 89.59x037 90.15:0.52 : 89.71x041 91.02x0.22

5 83.35:843 84.03:3.44 83.45:089 83.59+457 54.82x0s2 | 81.12:x120 81.85+1.80 1 91.83:025 92.12x042 1 91.25x039 91.68x0.45

Mi-F1 20 90.49:056 90.29:290 90.60:054 90.38+136 72.49x030 | 84.03x120 84.41:132 | 91.01=036 92.05x0.50 | 92165014 92.46+0.29

40 90.11x0.42 90.85:s567 90.80:047 90.99:0.41 74.56x0.64 | 85.43x1.00 85.91x0.91 | 91.35:028 92.19+0.36 | 91.72:026 92.53:031

60 91.70s042 90.25:6.22 91.58s0.45 92.13x027 73.632042 | 86.54z005 87.09:070 | 91.30z025 92.22:016 | 91.80x023 92.35:0.3

1 23.26:159 28.99:321 35.75:185 29.871228 31.08x0.96 | 37.70x221 40.22:2.50 : 28.00:1.65 32.5113.86 : 38.29:244 40.28:2:3

5 39.79:221 35.72x429 39.59+108 37.171279 37.47:113 | 45.58+3.05 49.63+1.04 | 35924240 37.66+2.28 | 48.82:1.10 51.87:1.69

Ma-F1 20 45.76+1.87 48.75:256 48.77x046 45.85:162 44.08x053 | 47.30x5.01 49.56+1.07 | 42165217 43.75+1.43 | 50.87=160 52.14+227

40 45.58:078 47.98:157 46.37s040 44.40:173 42472071 | 45.25:304 48.77s130 | 45.94s174 46484150 | 51.18:157 52.81s136

IMDB 60 49.512072 51.53:106 48.97x038 46.60+230 44.78x089 | 47.142722 51.14x125 | 48.12:127 49.19x142 | 52172167 53.83:136
1 38.23z040 39.33:131 40.281096 37.97x118 36.16s1.42 | 37.99x185 39.95s251 | 33.02:244 35.45:211 | 40.19:170 41.99:226

5 42.92:100 40.25:180 44.01:108 39.23x221 41.54z096 | 45.48:299 49.39+0.98 ! 3777133 38.74+216 ! 51.77+117 51.36+130

Mi-F1 20 45.80+1.74 50.29+204 48.78:042 46.65:162 44.85x058 | 48.58+2.90 49.22:1.12 1 42.61:213 44.33:157 1 52.08:136 52.72:1.22

40 4555084 48.68+150 46.39:035 44.90+162 43.36x071 | 46.11x265 48.52:1.31 | 46314105 47.24+1.63 | 52145116 52.71:118

60 49.46:0.73 53.05:095 49.00:0.41 47.101224 45.52x091 | 49.38x290 50.86+1.31 | 48.534135 49.92:1.43 | 52.414125 53.72:+1.94

5.1.3 Implementation details. For the homogeneous method GPPT, By integrating them with HetGPT, we push the envelope even fur-

we evaluate using all the metapaths and present the results with
the best performance. Regarding the parameters of other baselines,
we adhere to the configuration specified in their original papers.
In our HetGPT model, the heterogeneous feature prompt is ini-
tialized using Kaiming initialization [9]. During the prompt tuning
phase, we employ the Adam optimizer [16] and search within a
learning rate ranging from le-4 to 5e-3. We also tune the patience
for early stopping from 20 to 100. The regularization hyperparam-
eter A is set to 0.01. We experiment with the number of feature
tokens K, searching values from { 1, 5, 10, 15, 20 }. Lastly, for our
non-linear activation function o(-), we use LeakyReLU.

5.2 Performance on Node Classification (RQ1)

Experiment results for semi-supervised node classification on three
benchmark datasets are detailed in Table 2. Compared to the pre-
trained DMGI, HeCo, and HDMI models, our post-training prompt-
ing framework, HetGPT, exhibits superior performance in 88 out of
the 90 comparison pairs. Specifically, we observe a relative improve-
ment of 3.00% in Macro-F1 and 2.62% in Micro-F1. The standard
deviation of HetGPT aligns closely with that of the original mod-
els, indicating that the improvement achieved is both substantial
and robust. It’s crucial to note that the three HGNNs with “pre-
train, fine-tune” - DMGI, HeCo, and HDM], are already among the
state-of-the-art methods for semi-supervised node classification.

1021

ther, setting a new performance pinnacle. Furthermore, HetGPT’s
edge becomes even more significant in scenarios where labeled
nodes are extremely scarce, achieving an improvement of 6.60%
in Macro-F1 and 6.88% in Micro-F1 under the 1-shot setting. Such
marked improvements in few-shot performance strongly suggest
HetGPT’s efficacy in mitigating the overfitting issue. The strate-
gic design of our prompting function, especially the virtual class
prompt, effectively captures the intricate characteristics of each
class, which can potentially obviate the reliance on costly annotated
data. Additionally, GPPT lags considerably on all datasets, which
further underscores the value of HetGPT’s effort in tackling the
unique challenges inherent to heterogeneous graphs.

5.3 Performance under Different Settings (RQ2)

5.3.1 Ablation study. To further demonstrate the effectiveness of
each module in HetGPT, we conduct an ablation study to evaluate
our full framework against the following three variants:

o w/0 VCP: the variant of HetGPT without the virtual class prompt
from Section 4.2;

e w/o HFP: the variant of HetGPT without the heterogeneous
feature prompt from Section 4.3;

e w/0 MNA: the variant of HetGPT without the multi-view neigh-
borhood aggregation from Section 4.4.

WWW °24, May 13-17, 2024, Singapore, Singapore

100

B w/oVCP mmm w/o MNA B w/oVCP mmm w/o MNA
95 w/o HFP mEE HetGPT w/o HFP WM HetGPT
— —
Yoot e Y
e I
<4
3 3
S g5l il S
= 8 =

80

75

DMGI HeCo HDMI DMGI HeCo
(a) ACM (b) IMDB
Figure 2: Ablation study of HetGPT on ACM and IMDB.
95 57
—— ACM —=— DBLP —— IMDB
93 55
E. 91 -/'\./'/. uH‘_ 53
e 2
S 89 /——__\‘ S, ﬁ_\
= =
87
49
85
i 5 10 15 20 S 5 o 15 20
(a) ACM, DBLP (b) IMDB

Figure 3: Performance of HetGPT with the different number
of basis feature vectors on ACM, DBLP, and IMDB.

Experiment results on ACM and DBLP, shown in Figure 2, high-

light the substantial contributions of each module to the overall
effectiveness of HetGPT. Notably, the virtual class prompt emerges
as the most pivotal component, indicated by the significant per-
formance drop when it’s absent. This degradation mainly stems
from the overfitting issue linked to the negative transfer problem,
especially when labeled nodes are sparse. The virtual class prompt
directly addresses this issue by generalizing the intricate character-
istics of each class within the embedding space.
5.3.2 Hyper-parameter sensitivity. We evaluate the sensitivity of
HetGPT to its primary hyperparameter: the number of basis feature
tokens K in Equation (7). As depicted in Figure 3, even a really small
value of K (i.e., 5 for ACM, 20 for DBLP, and 5 for IMDB) can lead
to satisfactory node classification performance. This suggests that
the prompt tuning effectively optimizes performance without the
need to introduce an extensive number of new parameters.

5.4 Prompt Tuning Efficiency Analysis (RQ3)

Our HetGPT, encompassing the virtual class prompt and the hetero-
geneous feature prompt, adds only a few new trainable parameters
(i.e, comparable to a shallow MLP). Concurrently, the parameters
of the pre-trained HGNNs and the contrastive head remain un-
changed during the entire prompt tuning phase. Figure 4 illustrates
that HetGPT converges notably faster than its traditional “pre-train,
fine-tune” counterpart, both recalibrating the parameters of the pre-
trained HGNN’s and introducing a new prediction head. This further
demonstrates the efficiency benefits of our proposed framework,
allowing for effective training with minimal tuning iterations.

5.5 Interpretability Analysis (RQ4)

To gain a clear understanding of how the design of the virtual class
prompt facilitates effective node classification without relying on
the traditional classification paradigm, we employ a t-SNE plot to
visualize the node representations and the learned virtual class

1022

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V. Chawla

3 3
—— fine-tune —— fine-tune
t t
, promp 2 promp
%) 9]
[%)
o |4 o
4 |
1 _\‘ 1 \NN
0 0
0 100 200 300 0 100 200 300
Epochs Epochs
(a) DBLP (b) IMDB

Figure 4: Comparison of training losses over epochs between
HetGPT and its fine-tuning counterpart on DBLP and IMDB.

(a) ACM

(b) DBLP

Figure 5: Visualization of the learned node tokens and class
tokens in virtual class prompt on ACM and DBLP.

prompt on ACM and DBLP, as shown in Figure 5. Within this vi-
sualization, nodes are depicted as colored circles, while the class
tokens from the learned virtual class prompt are denoted by col-
ored stars. Each color represents a unique class label. Notably, the
embeddings of these class tokens are positioned in close vicinity
to clusters of node embeddings sharing the same class label. This
immediate spatial proximity between a node and its respective class
token validates the efficacy of similarity measures inherited from
the contrastive pretext for the downstream node classification task.
This observation further reinforces the rationale behind our node
classification approach using the virtual class prompt, i.e., a node is
labeled as the class that its embedding is most closely aligned with.

6 CONCLUSION

In this paper, we propose HetGPT, a general post-training prompt-
ing framework to improve the node classification performance of
pre-trained heterogeneous graph neural networks. Recognizing the
prevalent issue of misalignment between the objectives of pretext
and downstream tasks, we craft a novel prompting function that in-
tegrates a virtual class prompt and a heterogeneous feature prompt.
Furthermore, our framework incorporates a multi-view neighbor-
hood aggregation mechanism to capture the complex neighborhood
structure in heterogeneous graphs. Extensive experiments on three
benchmark datasets demonstrate the effectiveness of HetGPT. For
future work, we are interested in exploring the potential of prompt-
ing methods in tackling the class-imbalance problem on graphs
or broadening the applicability of our framework to diverse graph
tasks, such as link prediction and graph classification.

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks

REFERENCES

(1]

(2]
(3]

[10]
[11]
[12]

[13

[14]

[15

[16

[17]

[20]

[21]

[22]

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. 2022.
Exploring visual prompts for adapting large-scale models. arXiv preprint
arXiv:2203.17274 (2022).

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2017. Neural
photo editing with introspective adversarial networks. In ICLR.

Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin Li, and Philip S Yu. 2021.
Knowledge-preserving incremental social event detection via heterogeneous
gnns. In WWW.,

Wengi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In WWW.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. 2023.
Universal prompt tuning for graph neural networks. In NeurIPS.

Yang Fang, Xiang Zhao, Yifan Chen, Weidong Xiao, and Maarten de Rijke. 2022.
PF-HIN: Pre-Training for Heterogeneous Information Networks. IEEE Transac-
tions on Knowledge and Data Engineering (2022).

Xinyu Fu, Jiani Zhang, Zigiao Meng, and Irwin King. 2020. Magnn: Metapath
aggregated graph neural network for heterogeneous graph embedding. In WWW.
Zhichun Guo, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G Iyer, Yihong Ma,
Olaf Wiest, Xiangliang Zhang, Wei Wang, Chuxu Zhang, et al. 2023. Graph-based
molecular representation learning. In IJCAL

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In ICCV.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In KDD.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In WWW.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie,
Bharath Hariharan, and Ser-Nam Lim. 2022. Visual prompt tuning. In ECCV.
Xungqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang. 2021.
Pre-training on large-scale heterogeneous graph. In KDD.

Xungqiang Jiang, Yuanfu Lu, Yuan Fang, and Chuan Shi. 2021. Contrastive pre-
training of GNNs on heterogeneous graphs. In CIKM.

Baoyu Jing, Chanyoung Park, and Hanghang Tong. 2021. Hdmi: High-order deep
multiplex infomax. In WWW.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. In ICLR.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys (2023).
Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip.
2022. Graph self-supervised learning: A survey. IEEE Transactions on Knowledge
and Data Engineering (2022).

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. Graphprompt:
Unifying pre-training and downstream tasks for graph neural networks. In
WWWw.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? revisiting, benchmarking and refining heterogeneous
graph neural networks. In KDD.

Yihong Ma, Patrick Gerard, Yijun Tian, Zhichun Guo, and Nitesh V Chawla. 2022.
Hierarchical spatio-temporal graph neural networks for pandemic forecasting.
In CIKM.

Yihong Ma, Yijun Tian, Nuno Moniz, and Nitesh V Chawla. 2023. Class-
Imbalanced Learning on Graphs: A Survey. arXiv preprint arXiv:2304.04300

1023

[24

[25

[26

[27

™
&,

[29

[30

(31]

[32

[33

[36]
(37]

(38]

[39

[40

[41

[42]
[43]

[44]

WWW ’24, May 13-17, 2024, Singapore, Singapore

(2023).

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. 2020. Unsuper-
vised attributed multiplex network embedding. In AAAL

Xiaoguang Qi and Brian D Davison. 2009. Web page classification: Features and
algorithms. Comput. Surveys (2009).

Yuxiang Ren, Bo Liu, Chao Huang, Peng Dai, Liefeng Bo, and Jiawei Zhang. 2019.
Heterogeneous deep graph infomax. arXiv preprint arXiv:1911.08538 (2019).
Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. GPPT:
Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks.
In KDD.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in One:
Multi-Task Prompting for Graph Neural Networks. In KDD.

Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. 2023. Virtual Node Tuning
for Few-shot Node Classification. In KDD.

Yijun Tian, Kaiwen Dong, Chunhui Zhang, Chuxu Zhang, and Nitesh V Chawla.
2023. Heterogeneous graph masked autoencoders. In AAAL

Yijun Tian, Chuxu Zhang, Zhichun Guo, Yihong Ma, Ronald Metoyer, and
Nitesh V Chawla. 2022. Recipe2vec: Multi-modal recipe representation learning

with graph neural networks. In [JCAL
Daheng Wang, Zhihan Zhang, Yihong Ma, Tong Zhao, Tianwen Jiang, Nitesh

Chawla, and Meng Jiang. 2021. Modeling co-evolution of attributed and struc-
tural information in graph sequence. IEEE Transactions on Knowledge and Data
Engineering (2021).

Daheng Wang, Zhihan Zhang, Yihong Ma, Tong Zhao, Tianwen Jiang, Nitesh V
Chawla, and Meng Jiang. 2020. Learning attribute-structure co-evolutions in
dynamic graphs. arXiv preprint arXiv:2007.13004 (2020).

Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Chenglong Bao, Kaisheng
Ma, Jun Zhu, and Yi Zhong. 2021. Afec: Active forgetting of negative transfer in
continual learning. In NeurIPS.

Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu Philip. 2022.
A survey on heterogeneous graph embedding: methods, techniques, applications
and sources. IEEE Transactions on Big Data (2022).

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In WWW.

Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021. Self-supervised heteroge-
neous graph neural network with co-contrastive learning. In KDD.

Zhihao Wen, Yuan Fang, Yihan Liu, Yang Guo, and Shuji Hao. 2023. Voucher
Abuse Detection with Prompt-based Fine-tuning on Graph Neural Networks. In
CIKM.

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2022.
Self-supervised learning of graph neural networks: A unified review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (2022).

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous network representation learning: A unified framework with survey and
benchmark. IEEE Transactions on Knowledge and Data Engineering (2020).
Yaming Yang, Ziyu Guan, Zhe Wang, Wei Zhao, Cai Xu, Weigang Lu, and Jian-
bin Huang. 2022. Self-supervised heterogeneous graph pre-training based on
structural clustering. In NeurIPS.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In KDD.

Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu. 2022. A survey on
negative transfer. IEEE/CAA Journal of Automatica Sinica (2022).

Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, and Yanfang Ye. 2020. Network
schema preserving heterogeneous information network embedding. In IJCAL

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Method
	4.1 Prompting Function Design (C1)
	4.2 Virtual Class Prompt (C2)
	4.3 Heterogeneous Feature Prompt (C3)
	4.4 Multi-View Neighborhood Aggregation (C4)
	4.5 Prompt-based Learning and Inference

	5 Experiments
	5.1 Experiment Settings
	5.2 Performance on Node Classification (RQ1)
	5.3 Performance under Different Settings (RQ2)
	5.4 Prompt Tuning Efficiency Analysis (RQ3)
	5.5 Interpretability Analysis (RQ4)

	6 Conclusion
	References

