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» Overview

The challenge of interpretability
Intrinsic vs post-hoc explainability
Our takeaways for XAI in education (from TALE Summit 2023)

Our preliminary work on interpretable neural networks for learner modeling
A proposed unified framework for evaluating explanations

Upcoming workshop on XAI in education @ EDM 2024
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The challenge of interpretability
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The challenge of interpretability
00000

» Model interpretability

# A key component of algorithmic TRANSPARENCY
+ Important for issues of fairness, accountability, trustworthiness, regulatory
compliance, and improvability
+ “Black-box” models are now more common than ever

Deep neural network—a complex “black-box” model.
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» Intrinsic interpretability and post-hoc explainability

Intrinsic interpretability (model property):
how easy is it to understand the model’s
inner workings by observing its parameters?
Post-hoc explainability (analysis methods):
without peering directly into the inner
workings (parameters) of the model, what
can we learn about how it works?
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» Some problems with post-hoc explainability

Different post-hoc methods often
lead to different conclusions

box (Rudin, 2019)°¢
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aKrishna, S., Han, T., Gu, A., Pombra, J., Jabbari, S., Wu, S., &
Lakkaraju, H. (2022).The disagreement problem inexplainable machine
learning: A practitioner’s perspective.

waumy, V., Du, S., Marras, M., & Kaser, T. (2023). Trusting the
explainers: Teacher validation of explainable artificialintelligence for
course design.

separation #2.

The problem of additional separation from ground truth.

“Rudin, C. (2019). Stop explaining black box machine learning
models for high stakes decisions and use interpretable modelsinstead.
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» Takeaways for the field

The establishment of a unified vision for explainable AI (XAI) in education

Greater awareness of the complexities of XAI, including the problematic limitations
of post-hoc methods

Research into possible approaches for increasing model interpretability
The development of explainability evaluation methods
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Addressing takeaway 3:
One approach for increasing the interpretability of a black-box learner model
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» Data
6,057 students using the Cognitive Tutor Algebra ITS.
Gaming the system (GTS) behavior: “Attempting to succeed in an educational
environment by exploiting properties of the system rather than by learning the
material and trying to use that knowledge to answer correctly.” (Baker & de Carvalho,
2008)!
Features from Paquette et al. (2014)?, who used cognitive task analysis (expert
think-aloud and training) interpret student actions.

Identifier Description Pattern.
[did no think before help request] | Pause smaller or equal to 5 seconds before a help request
[thought before help request] ause areater o equal to 6 seconds before a help request
[read help messages] ause greater or equal to 9 seconds per help message after a help request orrect = Delas e [ contenl] ¢ fncorrect =
[scauning help messages] ause benween 4 and § seconds per help message after a help request ncorrect — smilarsewer] & Wcorree — s amswer i
[searching for bottom-out hint] Pause smaller or equal to 3 seconds per help message after a help request sute] & atteup g —
[thought before attempt] ause greater or equal to 6 seconds before step attempt context] & fncorrect — [guese] & |diff auswer ANDIOR diff
[planned ahead] st action was a correct step aftempt with a pause greater or equal to 11 seconds
Tauess] Pause smaller or equal to 5 seconds before step attept incorrec —[inilar ] ¢ fncorreet — ] & it
but sincere attemp(] ause greater than or equal (0 6 seconds before a bug Tl & [rehing o boonv-ow ] ncorect [t
[auessing with values from problem] | Pause sualler than or equal to 5 seconds before a bug e e oo ot
[read error message] Pause greater than or equal fo 9 seconds after a bug evitched conit befor comer] & atempthe
did not read ervor message] Pause smaller than or equal to § scconds after a bug. g sameaasves i context) & et — bug
[thought about error] Pause areater than or equal t© 6 seconds after an incorrect step attempt ncortec — st anse] & Incorreet - [iehed contst
[same answer/diff. context] Answer was the same as the previous action. but in a different context beors comret] & ncorres
[similar answer] “Answer was similar to the previous action (Levenshtein distance of 1 or 2) e el cometbefre o) & tuearrect =
- Context of the current action is not the same as the confext for the previous (incorrect) ncortec (i s & norrect > [0t
[switched context before right] action (refenred fo as “soft undenbelly” in Baker. Mitrovie. & Mathews 2010) B L
[same contex(] ‘Context of the curent action is the same as the previous action Tlp — acorsect — acorrec — Eacorreet (VI W IoT oo
[repeated step] . Ans\\vel and context are '|l'1‘e same as. d;\: previous. acn'cn ...!ﬂ:'f:?ﬁ::ffz.n- T l;"fﬁm

1Baker, R.S., & de Carvalho, A. M. J. A. (2008). Labeling student behavior faster and more precisely with text replays.
ZPaquette, L., de Carvalho, A. M. J. A., & Baker, R. S. (2014). Towards understanding expert coding of studentdisengagement in online learning.
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» Constraints-based interpretability: binary filters (Pinto et al., 2023)*
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Constrained a CNN by using a penalty term in its loss function designed to encourage
it to learn interpretable filters, as first described by Jiang & Bosch (2021).3

inputs

A 4
1D convolutional layer

RelLU activation

adaptive max pooling
A 4
fully connected layer

sigmoid activation

3Jiang, L., & Bosch, N. (2021). Predictive sequential pattern mining via interpretable convolutional neural networks.

4Pinto, J. D., Paquette, L., & Bosch, N. (2023). Interpretable neural networks vs. expert-defined models for learner behavior detection.
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Addressing takeaway 4:
Evaluating interpretability
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» Evaluating interpretability
Human-grounded evaluation: involves
human users performing simplified
tasks (Doshi-Velez & Kim, 2017)“.
Participants: experts + non-experts
Two tasks:

Forward simulation - predict the

model’s output given specific inputs

Counterfactual simulation - identify

how a specific input needs to be

changed to alter the model’s output
Analysis:

Accuracy rate

IRR between participants

Group comparisons

aDoshi—VeIez, F., &Kim, B. (2017). Towards a rigorous science of
interpretable machine learning.
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» Towards a unified framework for evaluating explanations (Pinto & Paquette, 2024)°

Explanations serve as mediators between models and stakeholders.
Applies to both intrinsically interpretable models and black-box models with post-hoc
explanations.

Intelligibility Faithfulhess

v

Plaug'lbil'rl-y S+abil'rl-y

Evaluation criteria framework. Edges depict the direction of dependence (A -> B = A depends on B).

& Pinto, J. D., & Paquette, L. (2024). Towards a unified framework for evaluating explanations.
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Addressing takeaway 1:
Attend our (hybrid) workshop!
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» HEXED @ EDM 2024

HEXED (Human-Centric eXplainable AI in Education) Workshop
July 14, 2024 @ EDM 2024 (Atlanta, Georgia)
Hybrid event
Organizers from University of Illinois Urbana-Champaign, EPFL, and University of
Mannheim.
https://hexed-workshop.github.io
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Thank you!

jdpinto.com
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» Preliminary results

Without regularization With regularization
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Weights unregularized vs. regularized filters. [20/20]
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